
www.manaraa.com

ALGORITHMS AND HARDWARE CO-DESIGN OF HEVC INTRA ENCODERS

by

Yuanzhi Zhang

B.S., Shandong University, 2011

M.S., Shandong University, 2014

A Dissertation

Submitted in Partial Fulfillment of the Requirements for the

Doctor of Philosophy Degree

Department of Electrical and Computer Engineering

in the Graduate School

Southern Illinois University Carbondale

December 2019

www.manaraa.com

ProQuest Number:

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent on the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Published by ProQuest LLC (

 ProQuest

). Copyright of the Dissertation is held by the Author.

All Rights Reserved.
This work is protected against unauthorized copying under Title 17, United States Code

Microform Edition © ProQuest LLC.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, MI 48106 - 1346

13857984

13857984

2020

www.manaraa.com

Copyright by Yuanzhi Zhang, 2019

All Rights Reserved

www.manaraa.com

DISSERTATION APPROVAL

ALGORITHMS AND HARDWARE CO-DESIGN OF HEVC INTRA ENCODERS

by

Yuanzhi Zhang

A Dissertation Submitted in Partial

Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

in the field of Electrical and Computer Engineering

Approved by:

Dr. Chao Lu, Chair

Dr. Spyros Tragoudas

Dr. Haibo Wang

Dr. Lalit Gupta

Dr. Mingqing Xiao

Graduate School

Southern Illinois University Carbondale

 May 13, 2019

www.manaraa.com

i

AN ABSTRACT OF THE DISSERTATION OF

Yuanzhi Zhang, for the Doctor of Philosophy degree in Electrical and Computer Engineering,

presented on May 13, 2019, at Southern Illinois University Carbondale.

TITLE: ALGORITHMS AND HARDWARE CO-DESIGN OF HEVC INTRA ENCODERS

MAJOR PROFESSOR: Dr. Chao Lu

 Digital video is becoming extremely important nowadays and its importance has greatly

increased in the last two decades. Due to the rapid development of information and

communication technologies, the demand for Ultra-High Definition (UHD) video applications is

becoming stronger. However, the most prevalent video compression standard H.264/AVC

released in 2003 is inefficient when it comes to UHD videos. The increasing desire for superior

compression efficiency to H.264/AVC leads to the standardization of High Efficiency Video

Coding (HEVC). Compared with the H.264/AVC standard, HEVC offers a double compression

ratio at the same level of video quality or substantial improvement of video quality at the same

video bitrate. Yet, HE-VC/H.265 possesses superior compression efficiency, its complexity is

several times more than H.264/AVC, impeding its high throughput implementation. Currently,

most of the researchers have focused merely on algorithm level adaptations of HEVC/H.265

standard to reduce computational intensity without considering the hardware feasibility. What’s

more, the exploration of efficient hardware architecture design is not exhaustive. Only a few

research works have been conducted to explore efficient hardware architectures of HEVC/H.265

standard. In this dissertation, we investigate efficient algorithm adaptations and hardware

architecture design of HEVC intra encoders. We also explore the deep learning approach in

mode prediction.

From the algorithm point of view, we propose three efficient hardware-oriented algorithm

adaptations, including mode reduction, fast coding unit (CU) cost estimation, and group-based

www.manaraa.com

ii

CABAC (context-adaptive binary arithmetic coding) rate estimation. Mode reduction aims to

reduce mode candidates of each prediction unit (PU) in the rate-distortion optimization (RDO)

process, which is both computation-intensive and time-consuming. Fast CU cost estimation is

applied to reduce the complexity in rate-distortion (RD) calculation of each CU. Group-based

CABAC rate estimation is proposed to parallelize syntax elements processing to greatly improve

rate estimation throughput.

From the hardware design perspective, a fully parallel hardware architecture of HEVC

intra encoder is developed to sustain UHD video compression at 4K@30fps. The fully parallel

architecture introduces four prediction engines (PE) and each PE performs the full cycle of mode

prediction, transform, quantization, inverse quantization, inverse transform, reconstruction, rate-

distortion estimation independently. PU blocks with different PU sizes will be processed by the

different prediction engines (PE) simultaneously. Also, an efficient hardware implementation of

a group-based CABAC rate estimator is incorporated into the proposed HEVC intra encoder for

accurate and high-throughput rate estimation.

 To take advantage of the deep learning approach, we also propose a fully connected layer

based neural network (FCLNN) mode preselection scheme to reduce the number of RDO modes

of luma prediction blocks. All angular prediction modes are classified into 7 prediction groups.

Each group contains 3-5 prediction modes that exhibit a similar prediction angle. A rough angle

detection algorithm is designed to determine the prediction direction of the current block, then a

small scale FCLNN is exploited to refine the mode prediction.

www.manaraa.com

iii

ACKNOWLEDGMENTS

I would like to express my sincere gratitude to my advisor, Dr. Chao Lu for his consistent

support, encouragement, and guidance throughout my Ph.D. studies. He is a passionate scholar

with great patience and immense knowledge. Without his persistent help, this dissertation would

not have been possible.

I would like to take an opportunity to honorably thank Dr. Spyros Tragoudas, Dr. Haibo

Wang, Dr. Lalit Gupta, and Dr. Mingqing Xiao for taking the time to serve on my committee and

their continuous guidance in my dissertation.

I would also like to thank all the members of VLSI Lab (E225) for their kind help and

support in my life. Special thanks to my friends, Zichang Zhang and Yan Wu for their help and

support.

At last, I would like to thank my family for their unconditional support in my life.

www.manaraa.com

iv

TABLE OF CONTENTS

ABSTRACT ... i

ACKNOWLEDGMENTS ... iii

LIST OF TABLES .. vii

LIST OF FIGURES ... ix

CHAPTERS

CHAPTER 1 INTRODUCTION .. 1

1.1 Background .. 1

1.2 Fundamentals of Video Compression .. 3

1.3 Research Challenges .. 5

1.4 Dissertation Outline ... 7

CHAPTER 2 HEVC COMPLEXITY ANALYSIS AND LITERATURE REVIEW 10

2.1 Intra Frame Coding In HEVC .. 10

2.1.1 HEVC Intra Prediction Modes .. 11

2.1.2 Coding Block Size and Structure .. 13

2.2 Rate-Distortion Optimization .. 15

2.3 Literature Review .. 16

2.4 Research Goal .. 19

CHAPTER 3 PROPOSED TABLE-BASED RATE ESTIMATION ... 20

3.1 Introduction .. 20

3.2 Rate-Distortion Optimization Literature Review .. 23

3.2.1 Existing Hardware Architecture for Rate Estimation ... 24

3.3 Proposed Highly-Parallel Hardware Architecture ... 27

www.manaraa.com

v

3.3.1 Design Methodology ... 27

3.3.2 Overview of Proposed Hardware Architecture ... 30

3.3.3 Input Signals and Interface.. 33

3.3.4 Coefficient Loading and Processing ... 35

3.3.5 Syntax Group Based Rate Estimation ... 36

3.3.6 Syntax Processing Order and Timing Diagram .. 40

3.3.7 RD Mode and Size Decision ... 43

3.3.8 Context Model Updating ... 44

3.4 Implementation Results ... 46

3.5 Conclusion ... 54

CHAPTER 4 PROPOSED HEVC INTRA ENCODER ... 55

4.1 Introduction .. 55

4.2 Proposed Efficient Algorithm Adaptations ... 57

4.2.1 PU Chroma Mode Preselection ... 58

4.2.2 PU Luma Mode Preselection .. 59

4.2.3 Modified CU Mode Decision .. 60

4.2.4 Simplified CABAC Rate Estimation .. 61

4.3 Proposed Hardware Architecture And Timing Diagram ... 63

4.3.1 Design Details of Non-PE Modules .. 64

4.3.2 Design Details of PE Modules .. 70

4.3.3 Timing Diagram of Proposed Intra Prediction .. 77

4.4 Experimental Implementation and Results .. 81

4.5 Conclusion ... 88

www.manaraa.com

vi

CHAPTER 5 PERFORMANCE ENHANCED INTRA ENCODER ... 90

5.1 Introduction .. 90

5.2 Proposed high-performance algorithm adaptation... 92

5.3 Hardware Architecture and Timing Diagram .. 96

5.3.1 Proposed Hardware Architecture .. 96

5.3.2 Proposed Timing Diagram and Balanced Prediction .. 98

5.3.3 Proposed Double-Clock Rate Estimation ... 101

5.3.4 Memory Usage .. 102

5.4 Experimental Implementation and results. .. 103

5.5 Conclusion ... 106

CHAPTER 6 DEEP LEARNING BASED MODE PRESELECTION 108

6.1 Introduction .. 108

6.2 Literature Review .. 111

6.3 Proposed Neural Network Based Mode Prediction ... 113

6.3.1 Proposed Mode Preselection Scheme ... 114

6.3.2 FCLNN Based Mode Refinement ... 116

6.4 Experimental Results ... 118

6.5 Conclusion ... 121

CHAPTER 7 CONCLUSION AND FUTURE WORK ... 123

7.1 Conclusion ... 123

7.2 Future work .. 124

REFERENCES ... 125

VITA ... 133

www.manaraa.com

vii

LIST OF TABLES

Table 2.1 A comparison of major functionalities between HEVC and its predecessor. 14

Table 3.1 Comparison of Rate Estimation Algorithm in HEVC. ... 26

Table 3.2 Group Based Syntax Elements Division. .. 28

Table 3.3 Iteration number calculation table .. 39

Table 3.4 Comparison of experimental results between the original rate estimation algorithm

in HM and the proposed modified rate estimation algorithm 48

Table 3.5 Experimental results of PSNR and number of clock cycles for different PU/CU

sizes and QP values of our proposed design .. 49

Table 3.6 Resource consumption comparison of rate estimation hardware designs. 51

Table 3.7 Hardware design comparison of rate estimators ... 52

Table 4.1 Losses in compression efficiency for successive modifications: PU chroma mode

preselection (M1), PU luma mode preselection (M2), Modified CU mode decision

(M3), simplified CABAC rate estimator (M4). ... 58

Table 4.2 Required number of registers in Block_Ref_Buffer. .. 66

Table 4.3 Luma prediction and RDO modes in the proposed design. .. 71

Table 4.4 Throughput and required clock cycles of transformation. .. 74

Table 4.5 Number of rate estimator instances for each PE. .. 75

Table 4.6 Comparison of experimental results of intra encoding algorithms. 82

Table 4.7 Memory usage in the proposed intra encoder (unit: bit). .. 83

Table 4.8 Average, maximum, and minimum clock cycles of rate estimator vs. QP value and

PU size. ... 84

www.manaraa.com

viii

Table 4.9 Average number of clock cycles and throughput of intra prediction vs. QP value

and PU size. .. 84

Table 4.10 Resource comparison of proposed design implemented by FPGA and TSMC

90nm technology. .. 85

Table 4.11 Comparison of FPGA implementations of H.265/HEVC intra encoders. 86

Table 4.12 Comparison of H.265/HEVC intra encoder hardware implementations. 87

Table 5.1 Breakdown results of BD-Rate increase in M1 algorithm. ... 93

Table 5.2 Efficiency comparison between different intra encoding algorithms. 96

Table 5.3 Asynchronous FIFO number and depth in each PE. ... 102

Table 5.4 Memory usage in the proposed intra encoder (unit: bit). .. 103

Table 5.5 Resource comparison between FPGA and ASIC implementations. 104

Table 5.6 Comparison of H.265/HEVC intra encoder hardware implementations. 104

Table 6.1 Details of angular mode splitting. ... 117

Table 6.2 Training accuracy of different groups with 2 hidden layers. 119

www.manaraa.com

ix

LIST OF FIGURES

Fig. 1.1. Difference between two raw video formats: YCbCr 4:4:4 and YCbCr 4:2:0. 3

Fig. 1.2. Example of spatial and temporal redundancy. .. 5

Fig. 2.1. Prediction mode examples: Horizontal Mode and Vertical Mode. 12

Fig. 2.2. 35 intra prediction modes for Luma PUs in HEVC standard ... 13

Fig. 2.3. Quad-tree coding structure ... 14

Fig. 3.1. Computation flow of RDO process .. 24

Fig. 3.2. Computational diagrams of existing rate estimation algorithms 25

Fig. 3.3. Computational diagram of CABAC entropy encoder. ... 27

Fig. 3.4. Proposed scheme of context model loading and updating. .. 30

Fig. 3.5. Proposed highly-parallel hardware architecture of a table-based CABAC rate

estimator. .. 31

Fig. 3.6. Syntax elements derivation with different scan methods for an 8×8 TU. 34

Fig. 3.7. Block diagram of proposed coefficients 4×4 loading controller. 36

Fig. 3.8. Block diagram of proposed rate estimator for syntax group A-D. 37

Fig. 3.9. Block diagrams of (a) rate estimator of “coeff_abs_level_remaining”, (b) k-th order

truncated Rice coding, (c) (k+1)-th oder Exp-Golomb coding....................................... 38

Fig. 3.10. Syntax processing order and timing diagram of the proposed syntax processors. 40

Fig. 3.11. Partition and mode decision flow through RD cost comparison. 44

Fig. 3.12. Flow chart of context model loading and updating scheme for each CU..................... 45

Fig. 3.13. The required number of clock cycles varying with QP values for two test

sequences .. 50

www.manaraa.com

x

Fig. 3.14. Processing time-saving percentage (with respect to PU 4×4) varying with QP

values for two test sequences .. 50

Fig. 4.1. Hardware architecture of the proposed fully-parallel H.265/HEVC intra encoder. 64

Fig. 4.2. CTU_Ref_MEM for (a) reference pixels of a current CTU, (b) reference pixels in

four 4×4 PUs of an 8×8 CU. ... 65

Fig. 4.3. Referred prediction modes for MPM generation with respect to (left) 8×8 region

and (right) 16×16 region. .. 67

Fig. 4.4. CU mode decision in partition optimization through RD cost comparison 68

Fig. 4.5. Hardware architecture of CABAC entropy encoder... 69

Fig. 4.6. Intra prediction architecture: (a) for 4×4 PUs, (b) for other size PUs. 72

Fig. 4.7. Transform Architecture for 4×4, 8×8, 16×16, and 32×32 TUs. 73

Fig. 4.8. Proposed highly-parallel table-based rate estimator. .. 76

Fig. 4.9. Parallel processing of various PUs in four PEs and their data/timing dependency. 78

Fig. 4.10. Timing diagrams of 4×4 PUs in PE0 and 8×8 PUs in PE1. ... 79

Fig. 5.1. Hardware architecture overview of proposed HEVC intra encoder. 97

Fig. 5.2. Timing diagram of PE0-2 and their data/timing dependency. .. 100

Fig. 5.3. The unbalanced and balanced block schduling schemes. ... 101

Fig. 6.1. Basic neural network structure (left) and neural node (right). 109

Fig. 6.2. Proposed deep learning-based mode preselection scheme. .. 115

Fig. 6.3. Structure overview of fully connected layer based neural network. 117

Fig. 6.4. Training accuracy vs training iteration. .. 120

Fig. 6.5. Training accuracy vs hidden layer numbers. .. 121

www.manaraa.com

1

CHAPTER 1

INTRODUCTION

1.1 BACKGROUND

Video compression is playing a more essential role in our daily life due to the increasing

importance of video data in our society. The past decade has seen the huge progress achieved in

the fields of wireless communication, semiconductor manufacturing, software development, and

data science, which empower the realization of compute-intensive and cutting-edge technologies,

such as high definition video applications.

Recently, video-based applications have attracted more attention than ever. For example,

the online video streaming service has achieved exponential growth when compared with

traditional television broadcasting. People are more likely to spend their time with digital media

because of its flexible and custom-oriented content service. Emerging applications, such as

unmanned aerial vehicle (UAV) [1], autonomous driving [2], motion detection and recognition

[3], etc., have been developed based on video data. For example, Video Assistant Referee (VAR)

system which is well-known and widely used in live sports, like football, has been developed to

assist referees to make correct decisions. All those new applications operate based on real-time

video transmission and encoding techniques. The emerging of numerous video data-based

applications further leads to the explosive growth of video data. Moreover, the increasing

activities of video transmission through network channels (Internet, 3G/4G/5G, etc.) will

definitely increase the network burden and result in inevitable network congestion.

Obviously, transmitting or storing raw video data is far away from cost-effective, because

redundant video data has not been eliminated at all. In the digital video field, the process of

video data redundancy removal is called video compression, also known as video coding.

www.manaraa.com

2

Currently, the most prevalent video coding standard is H.264 (AVC), which was released in

2003 [4]. There is no doubt that H.264 can greatly reduce the video size, however, when it comes

to high definition (HD) videos, H.264 is not very efficient. Because it was designed under the

circumstance where video applications were not widespread and the demand for high definition

videos was not as strong as today. However, in the past decade, displaying technology has

achieved huge progress. Liquid-Crystal Display (LCD) has been widely used to replace cathode-

ray-tube (CRT) TVs [5]. Various kinds of Light-emitting Diode (LED) displaying technologies

have been invented and adopted by displaying market, like Organic LED and Active-matrix

OLED [6, 7, 8]. The development of display technology further increases people’s demand for

high definition video services that provide extremely high-quality vision experience but also

require more advanced compression tools than H.264.

Therefore, High Efficiency Video Coding (HEVC/H.265) standard was proposed and the

first version was released in 2013 [9]. HEVC has been announced to provide 50% more bitrate

saving at the same level of video quality, compared with H.264 [10]. Despite the advantages that

HEVC provides in compression efficiency, its complexity in implementation is much higher than

H.264. From an algorithm point of view, a lot of researches have already been conducted to

reduce the computational complexity of HEVC standard. While most tried to develop fast

algorithms, which simplify mode prediction and motion search, only limited research aimed to

find algorithms not only less compute-intensive but also hardware friendly. From the hardware

implementation point of view, it is challenging to design an efficient and high-throughput

hardware architecture of HE-VC encoder, which is capable of dealing with UHD video

compression in real time. Few efforts have been made in academics towards hardware

implementation. Therefore, the exploration of efficient HEVC algorithm adaptations and

www.manaraa.com

3

hardware architecture design is not exhaustive. In this dissertation, we focus on both efficient

algorithm adaptations and hardware architecture design of HEVC intra-frame coding, which is

the most essential part of the HEVC standard.

In this section, we have briefly introduced the background of video compression. Section

1.2 shows some basic concepts of digital videos and video compression. Then, the challenges of

implementing HEVC intra encoder will be introduced in section 1.3. The dissertation outline will

be presented in section 1.4.

1.2 FUNDAMENTALS OF VIDEO COMPRESSION

The main purpose of video compression is to minimize transmission bit rate or video file

size, meanwhile retaining as high video fidelity as possible. Compression is performed exploiting

existing video data redundancy. Two kinds of redundancy are most commonly utilized in video

compression: spatial redundancy and temporal redundancy. Spatial redundancy refers to repeated

information existing within a frame, while temporal redundancy exists between similar blocks of

consecutive frames.

(a) YCbCr 4:4:4 (b) YCbCr 4:2:0

Y

Cb

Cr
Y

Cb Cr

Fig. 1.1. Difference between two raw video formats: YCbCr 4:4:4 and YCbCr 4:2:0.

A frame of digital video typically consists of three rectangular pixel blocks and each

pixel is usually an 8-bit integer number representing color value. Each rectangular pixel block is

called component, which is one part of a color representation system having three components

www.manaraa.com

4

called Y, Cb, and Cr [11]. While component Y (also known as luma) represents brightness, the

other two components Cb and Cr (known as chroma) represent chrominance. In video

compression, format YCbCr is preferred rather than RGB format, because the human visual

system is more sensitive to brightness (luma) than chrominance (chroma). Therefore, down

sampling usually be applied to chroma blocks to reduce computation with negligible perceptual

quality decrease. In this study, each chroma component has quarter pixels of the luma

component. This is known as 4:2:0 sub-sampling, which has been widely used as the raw video

format in compression. As shown in Fig. 1.1, the total number of pixels in 4:2:0 format is only

half of 4:4:4 format. Due to the greatly reduced pixels, 4:2:0 format can drastically save time and

computations.

As mentioned above, video compression relies on identifying spatial redundancy and

temporal redundancy. Spatial redundancy is defined as redundancy which exists within a single

frame. For example, spatial redundancy is always present in areas of video frame where pixel

values vary by small amounts, like repeated pixels in smooth background areas as shown in Fig.

1.2(a). Temporal redundancy is defined as redundancy existing between consecutive frames. As

shown in Fig. 1.2(b), two image blocks of successive frames show significant similarity, which

indicates it is inefficient to compress a similar block twice. According to redundancy utilized in

the coding of video frames, video frames can be classified as two categories: intra frame and

inter frame. Intra frame refers to frames where only spatial redundancy is utilized during video

compression, while both spatial redundancy and temporal redundancy will be exploited in inter

frames.

www.manaraa.com

5

(a) Spatial redundancy (b) Temporal redundancy

Frame 0 Frame 1

Fig. 1.2. Example of spatial and temporal redundancy.

1.3 RESEARCH CHALLENGES

Though HEVC standard provides superior compression efficiency to H.264, it is also a

non-negligible fact that HEVC is several times more complex than H.264. HEVC improves its

coding efficiency through both introducing new coding algorithms and extending existing coding

features.

The basic coding structure of HEVC is still a block-based hybrid video coding approach,

which is the same with all major video coding standards [12]. Each coding block is either intra

predicted or inter predicted according to the frame type. Signal errors after prediction are further

processed through transform coding, where energy is concentrated and less important

coefficients can be removed in quantization. Then, entropy encoder processes quantized

coefficients together with prediction information to generate output bitstream. Although HEVC

has a similar coding procedure as H.264, there are many differences in various aspects.

Firstly, HEVC introduces a new coding structure, where macroblock (MB) is replaced by

a coding tree unit (CTU) as the root coding unit. The size of CTU can be configured from up to

64x64 down to 16x16 to cope with different application scenarios. Usually, large CTU size will

www.manaraa.com

6

lead to better compression performance for high definition videos. Coding unit (CU) is the basic

coding element in HEVC and the largest CU size can be the same with CTU size. Then, HEVC

introduces a quad-tree structure, where each CU can be recursively split into four sub-CUs until

the smallest allowed CU size is met. CU size can be chosen from 64x64 down to 8x8. And each

CU contains a prediction unit (PU) and a transform unit (TU). While PU contains both prediction

information and prediction block (PB), TU corresponds to transform coding and transform block.

The supported PU and TU sizes are from 64x64 to 4x4 and from 32x32 to 4x4, respectively.

Moreover, for each luma PB, HEVC extends intra prediction mode from 9 in H.264 to 35. And

for chroma PB, 5 intra prediction modes are supported, while only 4 in H.264. In addition to

DCT transform, HEVC also supports discrete sine transform (DST), which is exclusively used

for luma 4x4 PB. All those enhancements result in a much more complex RDO (rate-distortion

optimization) process, which aims to find the best tradeoff between bit rate and video fidelity.

Most research efforts have been made to address the challenges of HEVC intra coding

merely in algorithm level, while only a few researchers have also attempted to design hardware

feasible algorithms. In this dissertation, we investigate to realize a real-time HEVC intra encoder,

which is capable of handling video compression of 4K@30fps videos, meanwhile retaining the

highest video quality. The entire work involves two aspects described as follows.

From an algorithm point of view, efficient algorithm adaptations need to be proposed to

reduce the computational complexity of HEVC intra encoders. The enhanced coding features of

HEVC have encouraged a much more complex RDO process, which contains a large number of

CU/PU/TU combinations. However, when it comes to hardware implementation, it is cost pro-

hibitive to undergo every possible RDO candidate and CTU partition due to its limited timing,

power, and chip area budget [13]. Therefore, the first challenge is to design both efficient and

www.manaraa.com

7

hardware-friendly video coding algorithms.

From the hardware implementation point of view, an efficient hardware architecture has

to be devised to satisfy the throughput requirement of 4K@30fps video compression. In order to

accelerate video compression, multiple hardware accelerating techniques have to be exploited,

such as pipelining, parallel processing, etc. Except for throughput, other factors also have to be

considered in hardware architecture design, like logic consumption, memory bandwidth, clock

frequency, etc. For pipeline stages, the throughput of each stage has to be balanced to maximize

the usage of computation. To reduce the chip size, logic and memory reuse technique has to be

employed. Thus, the second challenge is to design an area, power, and performance optimized

hardware architecture of HEVC intra encoder.

1.4 DISSERTATION OUTLINE

In this chapter, we have introduced the background, motivations, and challenges of our

research. The rapid growth of video applications, the increasing popularity of HD videos, and the

emergence of ultra-high-definition video formats (4K, 8K) have made the demands for superior

coding efficiency to H.264 stronger than ever. However, despite the incredible advantages with

HEVC standard, its complexity has also increased drastically, making HEVC hardware

infeasible without complexity reduction. Most research efforts focused on software optimizations

without considering hardware feasibility. To realize HEVC intra encoder in practice, we have to

design hardware friendly algorithms to reduce computational complexity as well as an area,

power, and performance optimized hardware architecture to sustain highly efficient video

compression.

In chapter 2, we will briefly introduce the major functions of video coding and HEVC

standard. Then, academic works regarding complexity reduction, rate-distortion optimization,

www.manaraa.com

8

mode preselection, and CU partitioning will be presented.

In chapter 3, we propose a group-based scheme to parallelize syntax element processing

in table-based CABAC rate estimation, which is an essential part of the entire RDO process. The

group-based method can significantly improve rate estimation throughput, which is always the

bottleneck of RDO. A highly-parallel architecture is sophisticatedly designed to implement the

proposed group-based CABAC rate estimator. Experiments show that the proposed rate

estimator can provide more accurate rate prediction than existing state-of-the-art approaches,

meanwhile satisfying the throughput requirement of rate estimation for 4K video compression @

30fps.

In chapter 4, we propose efficient algorithm adaptations of HEVC intra encoder and its

corresponding hardware architecture design. The proposed algorithm adaptations can drastically

reduce the complexity of HEVC intra encoding, meanwhile still retaining excellent video quality.

The coding efficiency of proposed algorithms is evaluated and compared with the original HM-

15.0 reference software. The hardware architecture is designed to maximize the parallelism of

intra prediction with a slight overhead of resource and power consumption. Comparison with

state-of-the-art researches is carried out to demonstrate the advantages of our proposals.

In Chapter 5, an enhanced intra encoder is presented based on the performance analysis

of the proposed design in chapter 4. The derived luma mode is included in chroma prediction,

while it has been excluded in the previous design. Compared with the design in chapter 4, the

enhanced intra encoder improves its compression efficiency greatly in worst-case scenarios,

making it more reliable. Then, a more balanced prediction block scheduling scheme is proposed

to improve the overall throughput of intra encoder. Moreover, in this new design, the operating

frequency of rate estimation has been doubled to improve its processing speed in order to

www.manaraa.com

9

mitigate the throughput decrease caused by derived luma mode inclusion.

In chapter 6, a fully connected layer based neural network (FCLNN) is investigated as an

alternative of RDO algorithm to determine intra prediction. Motivated by the superior efficiency

of deep learning techniques in potential feature extraction, a two-stage luma mode preselection

scheme is designed. The proposed mode preselection scheme aims at reducing the computation

complexity of RDO process in HEVC intra encoder.

In chapter 7, the conclusion and contributions of this dissertation are summarized. Future

work is also discussed.

www.manaraa.com

10

CHAPTER 2

HEVC COMPLEXITY ANALYSIS AND LITERATURE REVIEW

The standardization of HEVC aims to provide about 50% more bitrate reduction at the

same video quality over the H.264 standard [9]. Developed from H.264, HEVC has made several

improvements in various aspects of video coding. For example, HEVC supports a large variety

of block sizes in coding unit, prediction unit, and transform unit to improve its coding efficiency

in redundancy elimination. Besides, HEVC also introduces new coding tools, such as quad-tree

coding structure, residual quad-tree (RQT) transform coding, advanced motion vector prediction

(AMVP), refined intra prediction modes, sample adaptive offset, etc. In this dissertation, we only

focus on algorithm adaptations and hardware architecture design for intra-frame coding, thus, in

this chapter, only intra coding related features will be introduced and analyzed.

Many research efforts have already been made to address the challenges introduced by

HEVC standard since its initial release in 2013. A breakdown analysis of rising challenges in

HEVC intra-frame coding will be given in section 2.2. In particular, the details of the rate-

distortion optimization (RDO) process that contains a series of computation-intensive and time-

consuming processes, including prediction, transform, quantization, inverse quantization, inverse

transform, rate and distortion estimation, and reconstruction will be presented. State-of-the-art

researches conducted to reduce algorithm complexity will be introduced in section 2.3, including

prediction mode reduction, CU size fast decision, and simplified rate and distortion models.

2.1 INTRA FRAME CODING IN HEVC

Intra-frame coding is one of the most important parts of video compression. It relies on

the detection of spatial redundancy to realize compression. Intra-frame coding can be scheduled

independently or used as the starting frame of a GOP (Group of Pictures), which is a pre-defined

www.manaraa.com

11

structure that contains a series of consecutive frames to be coded as an integral part. Intra-frame

demonstrates its advantages over inter frames from several aspects. First, intra frame coding is

less computational than inter frame coding, which involves in computation-intensive motion

search. Second, intra frame coding of each prediction block relies on reconstructed pixels of its

previous coded blocks, which requires on-chip memory to buffer reconstructed pixels. However,

compared with inter frame coding that depends on reference frames, intra frame coding requires

much less memory resource. Moreover, the hardware implementation cost of intra only encoder

is much smaller than encoder with inter frames. The only disadvantage of the intra-only encoder

is its lower efficiency in terms of compression ratio and video quality. In video compression, a

larger compression ratio indicates a smaller video bit rate.

In HEVC, the coding efficiency of intra encoder has been greatly improved with several

major enhancements. For example, large coding, prediction, and transform blocks enable to find

more data redundancy during prediction, transformation, and quantization. The increased number

of intra prediction modes from 9 to 35 greatly enlarges the searching space for the best prediction

pattern, resulting in a more accurate prediction. The quad-tree coding structure allows finding the

best CU partitioning of each CTU. In the following sections, we will briefly introduce those

coding features.

2.1.1 HEVC Intra Prediction Modes

In intra-frame coding, each prediction block has to first go through intra prediction,

which is the first stage in all hybrid block-based video coding. Intra prediction tries to predict the

current block with reference pixels that are derived from reconstructed pixels of previously

coded blocks. Each prediction block is generated according to the prediction mode, which

defines exactly how the pixel values of the prediction block are calculated from reference pixels.

www.manaraa.com

12

Fig. 2.1 shows two frequently used prediction modes: horizontal mode and vertical mode.

Symbol A to symbol I indicate the reference pixels of the current 4×4 PU. In horizontal mode,

pixel values of each row are set equal to the reference pixel of the same row, while in vertical

mode, pixel values of each column are set equal to the reference pixel of the corresponding

column.

A B C D

F

G

H

I

E

4×4 PU

Horizontal Mode

A B C D

F

G

H

I

E

4×4 PU

Vertical Mode

Fig. 2.1. Prediction mode examples: Horizontal Mode and Vertical Mode.

The predicted pixel values of the current block will be further compared with its original

pixel values that convey information of interest. A prediction error block, also known as a

residual block, is derived by subtracting prediction block from the original block. Therefore,

each prediction mode will result in a dedicated residual block, which will be further used for

compression instead of original pixels.

The residual block goes through a series of computation processes, including transform,

quantization, reconstruction, rate estimation, etc. Rate-Distortion cost is usually adopted as the

metric of coding efficiency. Thus, the entire process of intra prediction is trying to find the best

prediction mode that brings about the smallest Rate-Distortion cost. With more prediction modes

introduced in HEVC, it is more likely to perform better prediction. In HEVC standard, there are

a total of 35 prediction modes for luma PUs, including DC, Planar, and 33 directional modes as

www.manaraa.com

13

shown in Fig. 2.2. Among all 33 directional modes, Horizontal and Vertical modes with index 10

and 26 are most frequently used. For chroma PUs, HEVC introduces one extra mode in addition

to four fixed modes (DC, Planar, Horizontal, and Vertical) as in H.264. The extra chroma mode

is derived from the corresponding mode of luma PU to enable better prediction in the case of

luma and chroma PUs possessing similar texture properties.

Fig. 2.2. 35 intra prediction modes for Luma PUs in HEVC standard

2.1.2 Coding Block Size and Structure

HEVC introduces the concept of coding tree unit (CTU) to replace macroblock (MB) in

H.264 [13]. CTU size can be configured from 16×16 up to 64×64, while MB is fixed to 16×16.

Each CTU consists of a certain number of CUs, which is determined by CTU partitioning. The

supported CU size in HEVC is from 8×8 up to 64×64. In intra frame coding, a large size CU can

be recursively split into four sub-CUs until the smallest allowed CU is reached, which is known

as the quad-tree coding structure. Each CU consists of PU and TU. PU conveys prediction

related information, including one Luma PB and two Chroma PBs, while TU contains transform

www.manaraa.com

14

related information, including one Luma TB and two chroma TBs.

Fig. 2.3(a) shows an example of a quad-tree structure of CTU 64×64. With a wide range

of block sizes available and quad-tree coding structure, HEVC is able to achieve a higher coding

efficiency than H.264 in terms of compression ratio and video quality. Large coding blocks are

suitable for smooth texture areas, while small coding blocks show advantages in detail-rich areas

as shown in Fig. 2.3(b).

CU

64x64

CU

CU CU CU

CU

32x32
CU CU

CU

CUCUCUCU

CU

16×16

CU

8×8

(a) Quad-tree structure (b) CTU partition example

32×32 4×4

16×16
8

Fig. 2.3. Quad-tree coding structure

Table 2.1 A comparison of major functionalities between HEVC and its predecessor.

Functionality H.264/AVC H.265/HEVC

Coding Tree Unit (CTU)
Macroblock (MB)

16×16

Chosen from 16×16, 32×32, and

64×64

Coding Unit (CU) Sizes Only 16×16
8×8, 16×16, 32×32, and 64×64

Quad-tree structure

Prediction Unit (PU) Sizes 4×4, 8×8, and 16×16 4×4, 8×8, 16×16, 32×32, and 64×64

Prediction Modes Luma: 9, Chroma: 4 Luma: 35, Chroma: 5

Transform Unit (TU) Sizes
4×4 and 8×8

Only DCT

4×4, 8×8, 16×16, and 32×32

DCT and DST

A comparison of key coding features has been made between HEVC and its predecessor

www.manaraa.com

15

as shown in Table 2.1. It is obvious that HEVC supports more block sizes of CU, PU, and TU,

which ensures a better compression performance.

2.2 RATE-DISTORTION OPTIMIZATION

As we have introduced the major improvements of HEVC over H.264 in the above

sections, the process that determines CTU partition and prediction modes is presented in this

section. It is also known as rate-distortion optimization (RDO), which consists of a series of

computation processes, including prediction, transform, quantization, inverse quantization,

inverse transform, reconstruction, rate estimation, and distortion calculation. The goal of RDO is

to find the best tradeoff between bitrate and video fidelity. The bitrate is closely related to the

compression ratio, while video fidelity reflects the quality loss. To quantify the coding efficiency

for comparison purpose, the Lagrangian cost is adopted and calculated by:

 J = D + 𝜆*R (2.1)

Where J is the Lagrangian cost, D is distortion, R is bit rate, and 𝜆 is the Lagrangian

multiplier. Distortion D is computed by the sum of squared errors (SSE) between reconstructed

pixels and original pixels. Rate R represents the bit rate of output bitstream. In HEVC reference

software, table-based context-adaptive binary arithmetic coding (CABAC) is employed for rate

estimation. Since CABAC is a context-based and highly serial process, it is a time-consuming

procedure to estimate the bitrate. Lagrangian multiplier 𝜆 is an experimentally determined

parameter, which can be adaptively changed according to different applications.

Given the Lagrangian cost function (2.1), the RDO process which aims at finding the best

PU modes and CTU partition can be performed accordingly. For each luma and chroma PBs,

RDO considers all potential prediction modes in a full-search scheme. For example, the RDO

process will be executed 35 times to find the best prediction mode of a luma PB with the smallest

www.manaraa.com

16

Rate-Distortion cost. Moreover, in order to find the best CTU partition, RDO has to be

performed for each possible combination of partition. Since HEVC supports a wide range of CU,

PU and TU sizes that result in a huge number of CTU partitions, it is infeasible to run RDO for

all candidates due to the limited availability of timing and computation in real application

scenarios.

2.3 LITERATURE REVIEW

As has been discussed above, HEVC brings about superior compression performance to

its predecessor, however, the complex RDO process makes HEVC much more difficult to be

commercialized. Therefore, many research efforts have been made recently to address all these

challenges in implementing the HEVC standard. Most of the researchers focus on improvement

on the software side, while only a few researchers try to build up hardware friendly solutions.

There are majorly three aspects in the RDO process, where research efforts are made to reduce

HEVC complexities.

The first one is prediction mode reduction, which aims to reduce mode candidates for the

RDO process. Authors in [14] proposed the use of Hadamard cost based rough mode decision

(RMD) and MPM (most probable mode) modes as RDO candidates. Their experiments are

carried out based on HM 1.0 with Intel CPU and achieves 20% and 28% encoding time savings

on average in high efficiency and low complexity profiles, respectively. In [15], a progressive

rough mode search (pRMS) is proposed. It adopts a 4-step mode searching scheme, which can

progressively refine its mode selection from the previous step. As reported in [15], their

approach reduces encoding time by 26% on average. Authors in [16] proposed to use an edge-

detection based method to establish an edge map, which is further used to select the candidate

modes for each prediction block. Additionally, with the edge map, redundant CU sizes can also

www.manaraa.com

17

be eliminated to reduce the number of partitions. The proposed method achieves encoding time

saving by 56.8% at the cost of 2.5% BD-Rate increase.

The second category is the fast CU size decision. As HEVC supports a wide range of CU

sizes from 8×8 to 64×64, each pixel will be repeatedly computed to find the best CTU partition.

Fast CU size decision aims to remove the redundant CU sizes for the RDO process or select the

best CU size without performing the full RDO process. In [17], Leng proposed a combined CU

size decision scheme, which contains frame-level CU preselection and CU-level size elimination.

In frame-level CU pre-selection, the percentage of adopted CU sizes that have been recorded is

being referred to as evidence to skip rarely used CU sizes. In CU size elimination, the neighbor

and co-located coding unit information are referred to for removing CU sizes that are unlikely to

be chosen. The CU size preselection approach provides 45% encoding time saving as reported in

[17]. To reduce the complexity of CU size decision, authors in [18] proposed a fast splitting and

pruning method, which contains two steps: early CU splitting decision and early CU pruning

decision. For each CU, a Bayes decision rule method is employed for early CU splitting and

pruning tests. Statistical parameters used for fast CU partitioning are periodically updated online

in order to cope with various statistical characteristics of different video frames. Experimental

results show their approach can save 50% encoding time on average with only 0.6% BD-Rate

increase. Ma proposed an early CU termination method based on an adaptive energy threshold,

which is defined by previous CUs [19]. Along with other complexity reduction algorithms, like

mode reduction, the proposed approach saves 30% encoding time.

The third category is the simplified RD model, which is expected to replace the

computation-intensive and time-consuming RD model in the RDO stage [20]. For each coding

block, distortion calculation involves a series of computational processes from prediction to

www.manaraa.com

18

reconstruction, while rate estimation relies on a highly dependent CABAC algorithm. To

simplify RD cost calculation, the authors in [21] proposed to exploit the transform-domain for

RD cost calculation, which means computation processes, like inverse transform, quantization,

and rate estimation, can be avoided in RDO process. In their approach, the bit rate is estimated

merely based on quantized coefficients along with pre-calculated parameters. The parameters

empirically obtained from statistics and curve fitting of previously encoded video frames can be

adaptively updated to cope with different video characteristics. And distortion in [21] is

measured between transform coefficients and inverse quantized coefficients, without inverse

transform and reconstruction. The transform-domain based RD model is reported to save 40%

encoding time on average with a negligible performance loss. The authors in [22] proposed a

four-pixel-strip based ESAD and quantized coefficients based linear model to perform the RDO

process, respectively. The proposed RD model was implemented with TSMC 65nm technology

and the achieved area reduction for distortion and rate is 42.2% and 93% respectively. [23]

proposed a non-zero coefficient-based method, which estimates rate according to the magnitude.

The achieved time-saving is 32% on average with about 8.4% BD-Rate loss.

From the above introduction of state-of-the-art researches, it is noticeable that most of the

proposals aimed to reduce the timing cost of software encoders, regardless of the feasibility of

their algorithms when it comes to hardware implementations. However, practical video encoders

are mostly running on a hardware platform like FPGAs or ASICs, because the hardware is

usually a hundred times faster than software solutions. Especially for HEVC standard, due to its

intensive computation requirement, a hardware implementation of HEVC encoder is

indispensable [24]. Therefore, considering hardware feasibility is with the same importance as

complexity reduction in developing efficient HEVC algorithms.

www.manaraa.com

19

2.4 RESEARCH GOAL

In this dissertation, we focus on the exploration of high-throughput hardware architecture

design and efficient algorithm adaptations of HEVC intra encoders.

From an algorithm point of view, we aim to design efficient complexity reduction

algorithms, which can relieve the computational burden in the RDO process. Strategies, like

mode reduction, CU size early determination, and simple Rate and distortion models, need to be

exploited. Meanwhile, the hardware feasibility of proposed algorithms must be taken into

account as well as coding efficiency.

From the hardware design perspective, in order to perform real-time video encoding of

4K@30fps, a high-throughput hardware architecture of HEVC intra encoder has to be devised.

Also, all proposed algorithm adaptations have to be realized in hardware to maintain consistency

between software and hardware. In order to satisfy the throughput requirement, the architecture

design should maximize the utilization of parallelism.

www.manaraa.com

20

CHAPTER 3

PROPOSED TABLE-BASED RATE ESTIMATION

In this chapter, we introduce a highly-parallel hardware architecture design of the table-

based CABAC rate model, which aims to improve rate estimation throughput in HEVC intra

encoders by employing more parallelism. The proposed rate estimator adopts a table-based

context-adaptive binary arithmetic coding (CABAC) bit estimation of HM-15.0 [25].

Modifications have been made to make the CABAC rate model hardware feasible without large

compressing efficiency degradation. The algorithm adaptations have been verified in the HM-

15.0 reference software. Experiments show a negligible loss on average of 0.005% and 0.0092dB

in BD-Rate and BD-PSNR, respectively. To improve rate estimation throughput, a new concept

of syntax group has been proposed. All syntax elements that involve in rate estimation have been

split into five different groups, where context model dependency does not exist between different

groups. Based on syntax groups, a highly-parallel hardware architecture is proposed to

parallelize the processing of syntax elements to increase the rate estimation throughput. The

proposed hardware architecture was implemented in Verilog and synthesized with FPGA and

ASIC. Compared with the state-of-the-art hardware designs for rate estimation in the literature,

our design achieves a great improvement in rate accuracy with a slight overhead of chip area and

power consumption. To our best knowledge, our approach is the first work to implement the

table-based CABAC rate estimator in hardware, achieving high rate estimation accuracy, but

maintaining high-throughput by parallelism. The proposed hardware architecture is attractive in

time-constrained, high-performance video coding applications.

3.1 INTRODUCTION

As discussed in the previous chapters, HEVC possesses superior compression efficiency

www.manaraa.com

21

to its predecessor H.264, however, the resultant computational complexity is also tremendous.

The main reason is that the enhanced coding features of HEVC lead to an extremely complex

RDO process, which aims to make the best trade-off between compression ratio and video

quality [26]. The optimization process of RD contains a series of computation tasks such as intra

prediction, transform, quantization, inverse quantization, inverse transform, rate estimation,

distortion calculation, etc. Even with complexity reduction methods, software implementation of

the RDO process is not capable of handling with UHD video compression in real-time scenarios.

Therefore, it is definitely a better choice to perform HEVC video encoding on a hardware

platform such as FPGA and ASIC. With a good pipelining design, computation-intensive tasks

like prediction, transform, quantization, inverse quantization, inverse transform, and distortion

estimation can be executed properly with high throughput. However, the CABAC rate estimation

is a highly serial process that relies on context modeling and updating. Syntax elements that

share context models exist a strong data dependency, which leads to the low throughput of

CABAC based rate estimation [27]. Hence, it is of great necessity to develop a high throughput

hardware architecture for CABAC based rate estimation.

Lots of research efforts have been made to address those challenges. Most of them have

been conducted to develop new rate models to replace the CABAC model. Only a few research

works have tried to improve the throughput of the CABAC model, which is one of the purposes

of our research. The proposed hardware architecture has the following three aspects of

advantages.

First, from an algorithm efficiency perspective, the table-based CABAC rate estimator is

a more accurate and reliable method than other alternatives, because it follows the essential

computation flow of CABAC entropy encoder that generates the output bitstream. Table-based

www.manaraa.com

22

CABAC rate estimator and CABAC entropy encoder have the same binarization, context

modeling, and context updating. The former that adopts look-up tables to replace binary

arithmetic coder (BAC) aims to output the bit number, while the latter performs binary

arithmetic coding to generate the bitstream. However, none of the existing designs in the

literature implement context-adaptive probability modeling and updating scheme for bitrate

estimation. Therefore, the discrepancy between the predicted rate and the real rate is inevitable in

those designs. In this dissertation, since we adopt the table-based CABAC rate estimator that

matches the context-adaptive probability modeling with the CABAC bitstream encoder, it

naturally ensures reliable, consistent, and accurate rate prediction.

Second, from a user convenience point of view, the proposed rate estimator does not rely

on preprocessing or offline training which is mandatory in [23, 28 and 29]. For example, the

design in [23] requires statistical data collection and curve fitting, which determine the key

parameters that are used in the rate prediction. Authors in [29] proposed to utilize a series of

probability density functions that define the ratio between bit number and bin number. These

functions are established through statistics, which cannot guarantee good accuracy of bit rate

estimation for any scenario. Actually, it is more likely that rate estimation accuracy may vary

widely depending on video content. In contrast, the proposed CABAC rate estimator fully

conforms to the procedure of CABAC entropy coding, so good rate prediction can be ensured

and the accuracy may change slightly with video contents.

Third, from a hardware implementation and performance point of view, our proposed

hardware architecture is highly efficient and enables high-throughput rate prediction. We

propose a three-parallelism rate estimation scheme, which consists of parallel rate estimation of

syntax groups of each PB, parallel rate estimation of different prediction modes of each PU, and

www.manaraa.com

23

parallel rate estimation of different size PUs. First, we propose to divide all syntax elements into

five syntax groups. Syntax elements that share context models are assigned to the same group.

Thus, context model dependency does not exist between syntax groups, indicating parallel

processing of syntax groups is possible. Second, since each PU may have not only one prediction

mode in the RDO process even after mode reduction, we propose to instantiate multiple rate

estimation instances to maximize rate estimation throughput. Moreover, the proposed hardware

architecture also enables parallel rate estimation of different size CUs.

The proposed design is fully conformed to the table-based CABAC rate estimator except

ignoring the syntax element “split_cu_flag”, which results in a negligible coding efficiency

degradation. A sophisticated hardware architecture has been designed and realized in Verilog.

The hardware design has been evaluated by FPGA and ASIC technologies. The relationship

among QP values, PSNR, CU sizes, and the number of required clock cycles for rate estimation

have been explored. Compared with existing hardware rate estimators, our design demonstrates a

significant advantage in accuracy and reliability, with the overhead of a relatively larger chip

area and higher power consumption.

The rest of this chapter is organized as follows. In section 3.2, the RDO process and

existing state-of-the-art designs will be briefly reviewed. The details of hardware architecture

will be revealed in section 3.3. Experimental results and comparisons are presented in section

3.4. The conclusion is drawn in section 3.5.

3.2 RATE-DISTORTION OPTIMIZATION LITERATURE REVIEW

In major video coding standards, rate-distortion optimization has been widely employed

to make the best trade-off between rate and distortion. The superior compression efficiency of

HEVC leads to an extremely complex and computation-intensive RDO process. Fig. 3.1 shows

www.manaraa.com

24

the computation flow of the RDO process, where distortion calculation involves a series of

computation processes such as prediction, transform, quantization, inverse quantization, inverse

transform, and reconstruction. On the other hand, rate estimation is performed on quantized

coefficients through the CABAC algorithm, where syntax elements are processed serially due to

context model dependency. The resultant low-throughput rate estimation further impedes the

overall processing speed of RDO. As been introduced previously, the Lagrangian cost function

JRD is adopted to assess the coding efficiency of each candidate.

Prediction

Reference

Pixels
Transform Quant

Inverse

Quant

Inverse

Transform

Rec

-

+

Current

Pixels

Distortion
Rate

Estimation

Reconstructed

Pixels
-

Current

 Pixels

JRD

Residues

RD cost

Fig. 3.1. Computation flow of RDO process

3.2.1 Existing Hardware Architecture for Rate Estimation

Directly implementing CABAC entropy encoder for rate estimation is inefficient due to

the inherent dependency during context modeling and binary arithmetic coding. Thus, a table-

based CABAC rate estimation scheme is proposed to evaluate the rate without binary arithmetic

coding to reduce dependency. However, context modeling between syntax elements is still

highly dependent on the table-based CABAC rate estimator.

So far, very few hardware solutions of rate estimation have been presented in literature

and their computational diagrams are illustrated in Fig. 3.2(a)-(c). In Fig. 3.2(a), non-zero

www.manaraa.com

25

quantized coefficients are directly employed to develop new rate models to replace CABAC

entropy encoder. In Fig. 3.2(b), bin number is adopted as the rate number. In Fig. 3.2(c), a table-

based context-fixed binary arithmetic coding (CFBAC) scheme is proposed. Fig. 3.2(d) shows

the table-based CABAC bit rate counting algorithm, which is adopted in our dissertation.

Binarizer
Probability

Estimator

Context

Memory

Context

selection

Binarizer

Syntax

Bin Counter

Syntax
Bit

Estimator

Bit_number

(a) non-zero coefficients counting

or magnitude
(c) table-based CFBAC bit rate counting

(b) bin counting

Non-zero

Detector or Magnitude

Quant

Coeffs

Binarizer
Probability

Estimator

Context

Memory

Context

selection

Syntax
Bit

Estimator

Bit_number

(d) table-based CABAC bit rate counting

Context Model

Update

Bins

Bins

Bins

Fig. 3.2. Computational diagrams of existing rate estimation algorithms

Table 3.1 shows a comparison of existing rate estimation algorithms that have been

implemented in hardware. Non-zero coefficient counting is proposed based on the assumption

that transformed residuals follow a Laplacian probability distribution, the bit rate is

approximated by counting non-zero coefficients after quantization. Based on the magnitude of

non-zero coefficients, new rate models have been developed for low complexity. These models

are based on statistical analysis. Therefore, a preprocessing stage or offline training is required to

perform data collection and curve fitting. However, statistical methods cannot guarantee a good

generalization of the derived rate model due to the unpredictable variety of video contents [30].

Bin counting method uses bin number directly as bit rate number without considering the

influence of entropy coding. In CFBAC, context models are fixed, thus syntax elements can be

www.manaraa.com

26

processed in parallel without the conflict risk in context modeling. Among all the above rate

estimation algorithms, CFBAC achieves the best compression performance when compared with

the CABAC algorithm. As shown in Table 3.1, CFBAC still has a 1.14% BD-Rate increase,

because the redundancy between syntax elements with the same context model has been ignored.

Table 3.1 Comparison of Rate Estimation Algorithm in HEVC.

Rate Estimation Algorithm ΔBD-Rate [%] (vs. CABAC)

Non-zero Quantized Coefficients Counting [21] N/A

Magnitude of Non-zero Quantized Coefficients [22, 23, 28,

31]

6.27 [22]

4.53 [23]

Bin Counting [29] 2.65 [24]

Table-based CFBAC Bit Counting [32] 1.14 [24]

Table-based CABAC Bit Counting [25] -0.13 [24]

In this dissertation, we adopt table-based CABAC bit rate counting, which shows

superior coding performance than existing algorithms. Compared with CABAC entropy encoder,

the table-based CABAC rate estimator achieves a slight decrease of 0.13% in BD-Rate as shown

in Table 3.1. Due to the negligible difference, the table-based CABAC rate estimator is the best

alternative of CABAC entropy encoder for rate estimation. The advantage of table-based

CABAC rate estimator is using look-up tables to replace binary arithmetic encoder to reduce the

inherent dependency in bitstream generation, which is not unnecessary in rate estimation. It has

also been adopted in HEVC reference software. However, the throughput of the table-based

CABAC algorithm is still limited by existing dependency during context modeling and updating.

Thus, it is still a challenge to develop a high throughput hardware architecture of table-based

CABAC rate estimator, while retaining its superior compression performance.

www.manaraa.com

27

The authors in [33] proposed to process 2 syntax elements (i.e., coeff_abs_level_greater1

_flag and sig_coeff_flag) in parallel, while the rest of 14 syntax elements are still processed in a

serial manner. With a 0.5% of bit rate overhead, CABAC rate estimation is accelerated. Yet, the

potential of parallelism in CABAC rate estimation is not fully investigated.

From the above discussion, it is apparent that these existing hardware architectures in

literature have not fully explored the potential parallelism of the table-based CABAC rate

estimation. Therefore, it is necessary to develop an efficient hardware architecture for table-

based CABAC bit estimation algorithm. This new architecture may exhibit good rate estimation

accuracy, meanwhile providing high throughput processing.

3.3 PROPOSED HIGHLY-PARALLEL HARDWARE ARCHITECTURE

3.3.1 Design Methodology

Fig. 3.3 shows the computational diagram of CABAC entropy encoder. The only

difference between table-based CABAC rate estimator in Fig. 3.2.1(d) and CABAC entropy

encoder is that binary arithmetic encoder is replaced by look-up tables in rate estimator.

Binarizer
Probability

Estimator

Context

Memory

Context

selection

Syntax

Binary

Arithmetic

Encoder

Bit-stream

Context Model

Update

Bins

Fig. 3.3. Computational diagram of CABAC entropy encoder.

Since output bitstream is not required in rate estimation, the table-based CABAC

algorithm employs three look-up tables to perform context updating and rate prediction. The

fractional bit number of each bin is accumulated to provide the total number of bits in rate

estimation. Since the binary arithmetic encoder is no longer used, it is possible to process syntax

www.manaraa.com

28

elements in a more flexible order in rate estimation. Moreover, syntax elements that do not share

context models can be processed independently and simultaneously. Inspired by this observation,

we propose to divide all related syntax elements into 5 syntax groups, each of which can be

processed independently. Syntax elements that require the same context models are grouped

together. Therefore, 5 syntax groups can be processed in parallel without context model

conflictions and the throughput of rate estimation is improved drastically. A group-based syntax

processing hardware architecture of rate estimation is proposed. The proposed design is expected

to achieve substantial improvement in rate estimation accuracy and throughput with the overhead

of a relatively larger chip area and higher power consumption.

Table 3.2 Group Based Syntax Elements Division.

Syntax Group Syntax Elements for Luma Rate Estimation Number of Context Models

A

prev_intra_luma_pred _flag 1

mpm_idx 0

rem_intra_luma_pred_mode 0

part_mode 1

cbf_luma 2

transform_skip_flag 1

B

last_sig_coeff_x_prefix 15

last_sig_coeff_y_prefix 15

last_sig_coeff_x_suffix 0

last_sig_coeff_y_suffix 0

C

coeff_abs_level_greater1_flag 16

coeff_abs_level_greater2_flag 4

coded_sub_block_flag 2

D sig_coeff_flag 27

E
coeff_sign_flag 0

coeff_abs_level_remaining 0

Total 16 syntax elements 84

Table 3.2 shows the results of syntax grouping of 16 syntax elements and the total

number of context models involved in rate estimation of intra luma blocks is 84. Group A

contains prediction information related syntax elements. Group B includes the last significant

www.manaraa.com

29

coefficient position related syntax elements. “coeff_abs_level_greater1_flag”, “coeff_abs_level_

greater2_flag” and “coded_sub_block_flag” are contained in Group C. Group D includes

“sig_coeff_flag”. Group E only contains bypass coded related syntax elements. Each kind of

syntax element in Table 3.2 may contain multiple syntax elements. For example, for the only

syntax element “sig_coeff_flag” in group D, it may contain up to 16 flags according to different

4×4 sub blocks of the quantized coefficient blocks.

In our work, we propose to parallelize the processing of 5 syntax groups to improve the

rate estimation throughput of each prediction block. Moreover, we also propose to implement

multiple rate estimator instances for more parallelism. Each instance is assigned to estimate the

rate of a candidate prediction block of a PU, which contains multiple mode candidates for RDO.

All candidate prediction blocks of the same PU share the same initial context models that have

been stored in a global context model buffer, which ensures that each prediction block has the

correct initial context model values.

Multiple rate instances improve the overall throughput of rate estimation in the RDO

process, however, the risk of context model update conflict should be avoided. The reason for

potential conflict is because the global context models are shared among multiple rate instances.

An updating of a global context model of one rate instance may lead to incorrect context

modeling of another rate instance. To address this challenge, we propose to localize context

models as shown in Fig. 3.4. The mechanism of our approach is described as follows.

Before starting rate estimation, all rate estimation instances of the same PU need to load

context models from the global buffer into their internal register arrays. This operation is called

the context model localization. Then, during rate estimation, local context models inside each

instance will be updated accordingly, while the global context models remain unchanged. Since

www.manaraa.com

30

each rate estimation instance has its local context model buffer, the conflicts of context modeling

between different instances can be avoided. Once the rate estimation is complete in all instances,

PU mode decision is made. Based on the decision result, the derived local context models that

correspond to the best PU mode in a rate estimation instance are selected to update the global

context models. In this way, our proposed procedures of context model loading and updating

prevent potential context model conflict among multiple rate estimator instances of the same PU.

For multiple rate estimation instances of different size CUs, we propose a similar procedure,

where the 4-level global context model buffer is exploited. Each level of context models

corresponds to a dedicated CU size from 64×64 to 8×8.

Syntax GA
Table for Local

Context Model of GA

Syntax GB

Syntax GC

Syntax GD

Table for Global Context Models

Select New Context Models

Update

Rate Estimator

Instance 0

Rate-Distortion

Mode Decision

Load

Upload

Load

Rate Estimator

Instance 1

Upload

Table for Local

Context Model of GB

Table for Local

Context Model of GC

Table for Local

Context Model of GD

Table for Local

Context Model of GA

Table for Local

Context Model of GB

Table for Local

Context Model of GC

Table for Local

Context Model of GD

Syntax GA

Syntax GB

Syntax GC

Syntax GD

Syntax GE Syntax GE

Fig. 3.4. Proposed scheme of context model loading and updating.

 3.3.2 Overview of Proposed Hardware Architecture

Fig. 3.5 demonstrates the proposed hardware architecture of the table-based CABAC rate

www.manaraa.com

31

estimator. The proposed design enables parallel processing of 5 syntax groups independently as

shown in the figure. In total, it contains 9 major modules, including Main Controller,

Coefficients Loading Controller, Coefficients Preprocessor, Fractional Accumulator, and five

syntax group (GA-GE) processors. The operating mechanism of the proposed rate estimator will

be described in this section.

Table for 4-Level Global Context Models

Intra Rate Estimator Architecture

Q
u

a
n

tize
d

C
o

efficien
ts

S
R

A
M

Main

Controller

min_idx

Coeff 4×4

Loading Ctrl

Coefficient

4×4 processor

Syntax GA

Syntax GD

Syntax GC

Syntax GE

Sign&ALRem

Syntax GB

Fractional rate

accumulatorpred_mode

RE_request
Scan_idx

part_mode
mpm_0/1/2

cbf

CU_type

RE_busy
2

6

2

26

Coeff_valid

Re_ready Last_xy_4×4

4

Last_4×4_flag

First_4×4_flag

Block_sig_flag

Alg1_flag

Num_nonzero

16

5

16

Coeff_sig_flag

Abs_coeffs(16*16)

Non_alg1_coeff_flagCoeffs(16×16)

GroupB_bits

GroupC_bits

Ctx_group_A Ctx_group_C Ctx_group_D

GroupD_bits

Sign_rem_bits

RE_valid RE_rate

16

P
r
ev

io
u

s_
S

ta
g
e
 in

 a
n

 R
D

O
 p

r
o
ce

ss

6

1

18

1

Load_ctx_valid

Load_ctx_depth

2

Coeff_raddr

Coeff_ren

Coeff_rdata 64

10

22

23

32

32

32

MD
MD_valid

MD_sel

Local Context

Model Table

Ctx_group_B
Local Context

Model Table

Ctx_group_B

GroupA_bits

Local Context

Model Table

Local Context

Model Table

Fig. 3.5. Proposed highly-parallel hardware architecture of a table-based CABAC rate estimator.

Before the beginning of rate estimation of a certain PB, Main Controller (MC) monitors

the status of the RDO process. When the quantization process of the PB is finished, a request of

rate estimation will be sent to the Main Controller to start rate estimation. Prediction related

signals of this PB used in rate estimation will be read as input signals from previous RDO

processes. Since the proposed rate estimation algorithm is performed on 4×4 sub blocks,

quantized coefficients will be split into sub blocks and read by Coefficients Loading Controller

www.manaraa.com

32

from on-chip 64-bit-width SRAM. Each sub block contains 16 quantized coefficients, each of

which is 16-bit width. The loading of a sub block takes 4 clock cycles with 4 coefficients read

per clock cycle. FIFO (first-in-first-out) is adopted to hold the loaded coefficients. Once the sub

block loading is completed, all 16 coefficients stored in FIFO will be sent to Coefficient

Processor to generate syntax elements. Then, syntax elements will be split into 5 groups and each

group will be processed in the dedicated syntax processor as shown in Fig. 3.5. Each syntax

processor will perform rate estimation independently and five fractional bit numbers be will

accumulated to form the total bit number. When the total bit rate is derived, the control signals

“RE_valid” and “RE_rate” will notify the mode decision block. Based on the “MD_sel” signal,

the global context models will be updated.

The proposed hardware architecture maximizes the irrelevance between syntax groups

and parallelizes the processing of syntax elements. It supports rate estimation of all CU sizes

from 64×64 to 8×8 and all TU sizes from 32×32 to 4×4. The PU size is set equal to CU size,

except for 8×8 CUs that are associated with either 8×8 PUs or four 4×4 PUs. The TU size is set

equal to PU size, except for 64×64 PUs that utilize four 32×32 TUs. The rate estimation of a CU

is estimated according to its TUs. If a CU contains multiple TUs, such as an 8×8 CU with a

partition mode N×N, the results of four sub-TUs are added as the total rate of this CU. Rate

estimation of a TU is performed on the basis of 4×4 sub-blocks according to its scan direction.

In this design, the pipeline technique is not widely utilized to optimize hardware

throughput due to two reasons. First, unlike these coefficients-based or bin-counting-based rate

estimators in [12-17] that purely rely on combinational logic gates to estimate rate, the proposed

table-based CABAC rate estimator calculates rate values mainly depending on look-up tables

(LUTs) of syntax contexts. In order to maximize the throughput, in the proposed rate estimator,

www.manaraa.com

33

syntax elements are classified into 5 independent groups for parallel processing. In our design,

the critical path involves three steps (i.e., context modeling, LUT access, and context model

updating). According to the algorithm, adjacent bins often rely on the same context model for

rate estimation. Thus, in order to process one bin per cycle and to avoid context conflicts, context

models should be used and updated within one clock cycle. Even though a pipelined design helps

to shorten the critical path, it also leads to potential conflicts of context models between adjacent

bins and causes inaccuracy in rate estimation. Second, synthesis results with TSMC 90nm

technology show our proposed non-pipelined hardware implementation is capable of running at a

clock frequency up to 640 MHz, which is enough to process a video format of 3840×2160 @

30fps. Since the non-pipelined design meets the system requirement, there is no need to apply

the pipeline technique to further improve the throughput.

Note the syntax element “split_cu_flag” is defined in the CABAC algorithm. The bit rate

of this syntax element is required when four sub-CUs are compared with a larger CU in the same

region. If four sub-CUs are chosen, this syntax element is 1. Otherwise, it is 0. This syntax

element is not involved in rate-distortion optimization among various prediction modes of a

given CU size. In this proposed architecture, this syntax element is intentionally omitted for

reduced design complexity and hardware cost. This choice will be validated by experimental

results in section 3.4.

3.3.3 Input Signals and Interface

Input signals (“CU_size”, “min_idx”, “cbf”, “pred_mode”, “mpm_0/1/2” and

“part_mode”) feeding rate estimator are obtained from the previous stage in an RDO process.

“CU_size” indicates current CU size. “min_idx” and “cbf” are generated after quantization step.

“min_idx” is the index of last 4×4 block, which contains non-zero coefficients according to its

www.manaraa.com

34

sub block scanning method. “cbf” (coded block flag) indicates if the current TU contains non-

zero coefficients or not. “pred_mode” indicates the prediction mode of current PU.

“mpm_0/1/2” indicates the most probable modes (MPMs) derived from neighboring PUs. When

a TU is larger than 8×8, only diagonal scan is used. For 8×8 or 4×4 TUs, intra prediction mode

determines the scan direction. Specifically, the vertical scan is assigned to the prediction modes

from 6 to 14. The horizontal scan is assigned to the prediction modes from 22 to 30. And

diagonal scan is applied to the other prediction modes.

3 1

2 0

3 2

1 0

3 1

2 0

15 13 10 6

14 11 7 3

12 8 4 1

9 5 2 0

15 14 13 12

11 10 9 8

7 6 5 4

3 2 1 0

15 11 7 3

14 10 6 2

13 9 5 1

12 8 4 0

Diagonal Horizontal Vertical

Min_idx = 2

Last_xy = (1, 5)

Sig_map = {1,0,0,1,1,0,

 0,0…}

Min_idx = 1

Last_xy = (0, 6)

Sig_map = {1,0,0,0,0,1,

 0,0,1,0,0,0…}

Min_idx = 2

Last_xy = (1, 5)

Sig_map = {1,0,1,0,0,1,

 0,0…}

Non-zero 4×4

Zero 4×4

Enlarged 4×4

Blocks

Zero coeff

Non-zero

coeff

Fig. 3.6. Syntax elements derivation with different scan methods for an 8×8 TU.

Fig. 3.6 illustrates an example of 8×8 TU, where three scan methods lead to different

“min_idx” values. For an 8×8 quantized coefficient matrix, horizontal scan makes “min_idx” to

1, while “min_idx” is 2 for diagonal and vertical scan methods. Since the scanning method

causes the coefficients in the last sub block to be scanned in different orders, the position of the

last significant non-zero coefficient is not identical as depicted in Fig. 3.6. For example, the last

coefficient corresponds to index 11 in a diagonal scanning, while it corresponds to index 7 in a

horizontal scanning. As a result, significance maps that contain these non-zero coefficients along

www.manaraa.com

35

the scanning path are different. Since this 8×8 TU in Fig. 3.6 contains non-zero coefficients, in

this example, the value of “cbf” is 1. Otherwise, the zero value of “cbf” indicates only syntax

group A is required for rate estimation.

3.3.4 Coefficient Loading and Processing

The performance of our proposed rate estimator is slightly affected by the latency of sub

block loading. Thus, we propose to use a FIFO to preload several sub blocks to minimize the

latency between sub blocks. Fig. 3.7 shows the block diagram of the proposed coefficients 4×4

loading controller, which is the interface with the external quantized coefficients SRAM. In Fig.

3.7, a FIFO sub block buffer (size 4×256) is implemented to store four sub blocks to eliminate

the latency caused by coefficient loading between the processing of two adjacent 4×4 sub blocks.

Due to the use of FIFO, regardless of the status of rate estimator, loading of 4×4 sub blocks from

quantized coefficients SRAM will not stop until the FIFO is full. In addition, as long as the FIFO

is not empty, the coefficient 4×4 processor can fetch and process 16 coefficients of one 4×4 sub

block from this FIFO. As a result, the initial latency of coefficient process for the first 4×4 sub-

block is 6 clock cycles (i.e., 4 for SRAM reading access, 1 for FIFO writing access, 1 for FIFO

reading access). Yet, this latency is only 1 clock cycle (i.e., FIFO reading access) for subsequent

sub blocks. Compared with the design in [29] which uses 1K byte SRAM for coefficients

loading, this proposed architecture adopts about 0.2K byte registers for each rate estimation

instance. In fact, loading quantized coefficients to the coefficient loading controller is

independent of passing them to the coefficients processor. When the coefficient 4×4 processor

sends a “Re_ready” signal to request reading the FIFO, if the FIFO is not empty, one 1×256 data

will be loaded into the coefficient 4×4 processor during the next clock cycle. Then, syntax

elements and related variables start to generate. For example, syntax element

www.manaraa.com

36

“coded_sub_block_flag” is derived from checking “sig_coeff_ flag” of these 16 coefficients.

“last_x_4×4” and “last_y_4×4” indicate the scan position of first non-zero coefficient in this

4×4 block. “last_x_4×4”, “last_y_4×4” and “min_idx” generate “last_x” and “last_y”, which

refer to the scan position of first non-zero coefficient in the current TB. Syntax elements in group

B are determined by a binarization scheme of “last_x” and “last_y”.

4×64

Coeff sub-block buffer

1×256

1×256

1×256

1×256

Sub-block FIFO

4×256
Write_FIFO Read_FIFO

1×256

Block 4×4

64 bit

Coeff_rdata

Load_coeff

Ctrl

FIFO_full
Coeff_ren

Coeff_raddr

Read_FIFO

Ctrl

FIFO_empty

To Coeff

Processor

Re_ready

Coeff 4×4 Loading Ctrl

Fig. 3.7. Block diagram of proposed coefficients 4×4 loading controller.

3.3.5 Syntax Group Based Rate Estimation

This section describes how to estimate the fractional rate of each syntax group. As all

related syntax elements are assigned to five independent groups, the total bit rate is the sum of

five fractional rates (i.e., GroupA_bits, GroupB_bits, GroupC_bits, GroupD_bits and

Sign_rem_bits in Fig. 3.5). The procedure of fractional rate estimation is the same as the table-

based CABAC bit rate estimation algorithm in HEVC reference software, including binarization,

context modeling, rate estimation, and context updating. As been mentioned earlier, five syntax

element groups are processed in parallel without following a defined syntax processing order.

Fig. 3.8 plots the block diagram of proposed bit rate estimator for syntax groups from A

to D. There are three look-up tables (i.e., MPS_LUT, LPS_LUT, Entropy_Bits_LUT), and each of

them consists of 128 storage elements. The predicted most probable symbol (MPS) is stored as

the lowest bit of the current context model, which is a 7-bit binary data. The value of MPS is

www.manaraa.com

37

compared with the current bin to be coded, and generates a control signal “Is_MPS”. Based on

“Is_MPS” and the current context model, new context model from either MPS_LUT or

LPS_LUT is selected and then updated to the Local Context Models. According to the current bin

value and its corresponding context model, the fractional rate of this bin is determined through

the look-up table Entropy_Bits_LUT. Each fractional rate value is an 18-bit fixed-point number,

the highest 3 bits of which represent integer numbers. The number of bypass coded bins exactly

represents the rate, therefore, a bypass bin counter is used to calculate bin number. The total rate

of a syntax group is accumulated by a Bits_ACC block, which adds up all fractional rates of

regular bins and bypass bins.

Binarizer
Syntax

Element

Bypass

Bin

Counter

Local Context

Models

Update

regular bin

Ctx_model
MPS_LUT

LPS_LUT

Entropy_Bits_ LUT

Bits ACC

Is_MPS

M

U

X

Context

Model Selection

Bin_idx BIN

Test

Entropy_idx

4
7

7

7

total_bits

18Bin_num

168
bypass bin

frac_bits

Fig. 3.8. Block diagram of proposed rate estimator for syntax group A-D.

Syntax group E consists of two syntax elements “coeff_sign_flag” and

“coeff_abs_level_remaining”. Both of them contain bypass only bins. Therefore, local context

models are not required for syntax group E. As bit rate of syntax group E is equal to the number

of bins generated by its syntax elements, a bin counter is implemented to calculate the rate of

syntax group E. The number of bins for the syntax element “coeff_sign_flag” is calculated by

coefficient processor. Bin counting of the syntax element “coeff_abs_level_remaining” is more

critical due to its complex binarization procedure.

www.manaraa.com

38

comparator B0 + 1
Non_zero

Abs Coeff

k-th order

truncated Rice

(k+1)-th order

Exp-Golomb coding

remaining_coeff

k M

U

X

Bin Number

comparator

Bits

ACC

16

16 2

16

sel

3

6

6

>> k

remaining_coeff

shifted_remaining[1:0]

adder

(k+1)

3

3

2

bin_num

remaining_coeff

number

code

k

leading one

detection
16

55

leading_one_idx
rem_allone_flags

iteration

bin_num calculation

3

1616

5

(b) (c)

Bin Number

(a)

6
bin_num

total_bits

16

calculate 3×2
k

non-bypass bin

coded_number

Fig. 3.9. Block diagrams of (a) rate estimator of “coeff_abs_level_remaining”, (b) k-th order

truncated Rice coding, (c) (k+1)-th oder Exp-Golomb coding.

Fig. 3.9(a) illustrates the rate estimator diagram for “coeff_abs_level_remaining”, which

involves binarization processes of k-th order truncated Rice coding in Fig. 3.9(b) and (k+1)-th

order Exp_Golomb coding in Fig. 3.9(c). Bit rate estimation of “coeff_abs_level_remaining”

starts with the generation of 16-bit signal “remaining_coeff”, which is obtained by comparing

non-zero absolute coefficients with B0+1. The initial value of parameter B0 is 2, and becomes to

1 at the first time when the absolute coefficient is larger than 1. Then, B0 turns to 0 after

www.manaraa.com

39

processing non-zero coefficients by eight times. If the absolute coefficient is smaller than B0+1,

no bypass bin is generated. Otherwise, bypass bin number of current syntax “coeff_abs_level_

remaining” is evaluated based on two arithmetic coding algorithms: k-th order truncated Rice

and (k+1)-th order Exp-Golomb. The value of “remaining_coeff” is compared with a constant

value 3×2k, then a resultant selection signal “sel” is generated for the multiplexer. Binarization

result either from k-th order truncated Rice coding or (k+1)-th order Exp-Golomb coding is

selected and passed to the rate accumulator. The parameter k is initially set to 0, and later may be

updated to the minimum value of k+1 and 4. In Fig. 3.9(a), the bin number estimation takes two

clock cycles. “remaining_coeff” and bin number are calculated in the first and second clock

cycles, respectively. So this two-step process is pipelined to achieve a throughput of one

coefficient per clock cycle.

Table 3.3 Iteration number calculation table

“leading_one_idx” Iteration number

<k+1 0

=k+1 1

>k+1 Depend on “rem_allone_flags”

Fig. 3.9(b) illustrates the proposed block diagram of k-th order truncated Rice coding.

“remaining_coeff” is shifted right by k bits, then the lowest two bits are sent to a 3-bit adder.

Bin number is the output of this adder. Fig. 3.9(c) depicts the block diagram of (k+1)-th order

Exp-Golomb coding. A 16-bit signal “coded_number” is generated and sent to detect leading

one. The resultant outputs are two 5-bit signals “leading_one_idx” and “rem_allone_flags”.

Each bit of “rem_allone_flags” is obtained by checking every bit of “coded_number” from the

index (“leading_one_idx”–1) to index k. As shown in Table 3.3, “iteration_number” and

“rem_allone_flags” depend on k. The total number of bins is derived by the equation

“iteration_num”×2+4+k.

www.manaraa.com

40

3.3.6 Syntax Processing Order and Timing Diagram

CTX_LD BN_XY BIN_X1 ... BIN_Xn BIN_Y1 ... BIN_Ym

CTX_LD MODE PART CBF TSKIP

CTX_LD SIG[last+1] ... SIG[15]

CTX_LD ALG1[1...L] ALG2 IDLE

IDLE

IDLE

SIGN ALREM[1...N] IDLE

Syntax

GA

Syntax

GB

Syntax

GC

Syntax

GD

Syntax

GE

CSBF IDLE

IDLE

IDLE

CSBF

SIG[0] ... SIG[15]

ALG1[1...L] ALG2 IDLE

ALREM[1…N] IDLESIGN

Last 4×4 with N

non-zero coefficients

all-zero

4×4

First 4×4 with N

non-zero coefficients

n cycles m cycles

2 cycles

(16-last) cycles 16 cycles

SIG[0] ... SIG[15]

ALG1[1...L] ALG2 IDLE

ALREM[1…N] IDLESIGN

DONE

DONE

DONE

DONE

DONE

non-zero 4×4

16 cycles

… … ...

… … ...

… … ...

(L + 2) cycles

(N + 1) cycles

(L + 2) cycles

(N + 1) cycles

(L + 1) cycles

(N + 1) cycles

Notation: CTX_LD (context model load), SIGN (coeff_sign_flag), BN_XY(binarization of last x and last y),

CBF(coded block flag), TSKIP (transform_skip_flag), MODE (pred_mode), PART (part_mode), SIG (sig_coeff_flag),

ALREM (coeff_abs_level_remaining), CSBF (coded_sub_block_flag), ALG1(coeff_abs_level_greater1_flag),

ALG2(coeff_abs_level_greater2_flag)

Fig. 3.10. Syntax processing order and timing diagram of the proposed syntax processors.

Fig. 3.10 illustrates the syntax processing order and the timing diagram of five syntax

element groups in the proposed rate estimator. Processing of syntax group A and B is performed

once for each TB, while processing of syntax group C to E is triggered according to 4×4 sub

blocks as shown in Fig. 3.10. Context model loading (CTX_LD) is performed at the beginning of

CU rate estimation. Due to a large number of context models and limited SRAM access

bandwidth, it takes a lot of clock cycles to load context models from SRAMs and update context

models back to SRAMs. Therefore, instead of SRAMs, register arrays are selected as context

model buffers, because of its short access time and high-bandwidth for enabling parallel data

access from multiple rate estimator instances. In our design, 1 clock cycle is enough to load or

update these global context models from or to local register arrays. As syntax group E does not

rely on context models, its rate estimation starts with the syntax “coeff_sign_flag”. The details of

the syntax processing order and timing diagram are described below.

In group A, three syntax elements “part_mode”, “transform_skip_flag” and “cbf_luma”

are regularly coded and each contains one bin. “transform_skip_flag” is only for 4×4 TUs in the

www.manaraa.com

41

TSKIP process. If “pred_mode” matches one of three MPM modes, “prev_intra_luma_pred_

flag” is 1, and “mpm_idx” is equal to the index of matched MPM mode. “prev_intra_luma_pred

_flag” is regularly coded in the MODE process. “mpm_idx” and “rem_intra_luma_pred_mode”

are bypass coded. Binarization of “mpm_idx” is performed by the truncated unary. The fixed-

length binarization is applied to “rem_intra_luma_pred_mode”. Bin number of “mpm_idx” or

“rem_intra_luma_pred_mode” is calculated after binarization. The entire processing time for

group A is less than 6 clock cycles.

In syntax group B, binarization process BN_XY of (last_x, last_y) is performed after

CTX_LD. The signals “last_x” and “last_y”, determined by “min_idx” and “Last_xy_4×4”,

indicate the position of last non-zero coefficient in a TU. Four syntax elements are derived from

“last_x” and “last_y”. “last_sig_coeff_x_prefix” and “last_sig_coeff_y_prefix” that specify the

prefixes of the column and row positions of the last non-zero coefficient contain regular coded

bins, while “last_sig_coeff_x_suffix” and “last_sig_coeff_y_suffix” that specify the suffixes of

the column and row positions contain bypass coded bins. Truncated unary binarization is applied

to prefix syntax elements, while fixed-length binarization is used for suffix syntax elements.

Assume there are n regular bins of syntax “last_sig_coeff_x_prefix” and m regular bins of syntax

“last_sig_coeff_y_prefix” in Fig. 3.10. Then, according to the bin processing order, the total

number of required clock cycles is (m+n+2).

Syntax group C contains the regular coded syntax element “sig_coeff_flag”. Syntax

group D contains regular coded syntax elements “coeff_abs_level_greater1_flag” (ALG1),

“coeff_abs_level_greater2_flag” (ALG2), and “coded_sub_block_flag” (CSBF). Syntax group E

only contains bypass coded syntax “coeff_sign_flag” and “coeff_abs_level_remaining”

(ALRem). Fig. 3.10 shows four different sub block cases of rate estimation for syntax groups C-

www.manaraa.com

42

E. In each sub block, N is defined as the number of non-zero coefficients of current 4×4 block

and L is the maximum number of “ALG1” syntax elements to process. L is set equal to the

smaller value of N and 8.

1) Last 4×4 sub block: It is the first sub block to process in rate estimation. In syntax

group C, “sig_coeff_flag” of the first non-zero coefficient along the scanning path is ignored.

Processing of “sig_coeff_flag” starts from the next scan position. In syntax group D, processing

of “ALG2” is performed when there exists an absolute coefficient larger than 1 in this sub block.

If this coefficient is also larger than 2, the bin value of “ALG2” is 1. The processing of the syntax

element “coded_sub_block_flag” is ignored for this sub block according to the CABAC rate

estimation algorithm. In syntax group E, the processing of “coeff_sign_flag” starts immediately.

As “coeff_sign_flag” is bypass coded, the resulting rate is equal to the number of non-zero

coefficients. Each non-zero coefficient is examined by the ALREM process, which performs

binarization of the syntax element “ALRem”. The total number of clock cycles required in Group

E is determined by the number of non-zero coefficients. N is the required number of bits to

compress “coeff_sign_flag”. Rate estimation of “ALRem” is carried out by the proposed scheme

in Fig. 3.10. The required total number of clock cycles is determined by the scan position of the

first non-zero coefficient in this block.

2) All-zero 4×4 sub block: All coefficients in this block are zeros. In this case, the only

syntax “coded_sub_block_flag” with value 0 is processed within 2 clock cycles for all groups C-

E. It takes 2 clock cycles to process each all-zero sub block.

3) Non-zero 4×4 sub block: This block contains at least one non-zero coefficient.

According to the scan order, it is neither the last 4×4 block nor the first 4×4 block. There are 16

regular coded bins of syntax “sig_coeff_flag” to process, so it takes 16 clock cycles to process in

www.manaraa.com

43

group C. In group D, the process is almost the same as that in the last 4×4 sub block, except a

value 1 for “coded_sub_block_flag”. The number of required clock cycles in group D is

determined by L and “ALG2”. In group E, the required number of clock cycles is determined by

(k+1).

4) First 4×4 sub block: It is the final sub block to process. Processing this block is similar

to that with the non-zero 4×4 sub block, except the absence of “coded_sub_block_flag” in group

D. The required numbers of clock cycles for group C, D and E are marked in Fig. 10.

After processing the first 4×4 sub block, the DONE process is activated to execute two

operations: calculating the final rate of current CB or TB by fractional rates of five syntax groups

in a fractional rate accumulator, and saving newly derived context models in local register arrays.

These new context models will be further used to update the 4-level global context models after

the mode decision. When a rate estimator reaches the DONE status, it can be scheduled to

process another CB or TB.

3.3.7 RD Mode and Size Decision

Mode and size decision in intra prediction involves the determination of best prediction

modes and partition for a given CTU. Fig. 3.11 illustrates a partition and mode decision flow,

where each RD cost accumulator calculates the sum of 4 sub-CU RD costs and then compares it

with the RD cost of a larger CU. RD cost of the same CU with different PUs are also compared,

even though this process is not presented in Fig. 3.11. Finally, the smallest RD cost among all

possible prediction modes and partitions is taken as the RD cost of this CU, which will be further

compared with a larger CU until CU 64×64 is reached. The progressive comparison from the

smallest CU to the largest CU guarantees to find the best CTU partition as well as the best

prediction mode of each PU in the partition.

www.manaraa.com

44

8×8 CU

8×8

RD cost
>

RD cost

RD cost

16×16

PU

16×16 CU

Cost

ACC

32×32 CU

RD cost

>

RD cost

Cost

ACC

16×16

RD cost
>

32×32

RD cost Cost

ACC
>

split_16×16 split_32×32 split_64×64

64×64 CU

4×4 PUs
RD cost

part_size

> RD cost comparator
Cost

ACC

RD cost accumulator

for sub blocks

32×32

PU

8×8

PU

64×64

PU

Fig. 3.11. Partition and mode decision flow through RD cost comparison.

Moreover, the RD cost comparison in Fig. 3.11 also generates signals for the context

model updating, such as “part_size”, “split_16×16”, “split_32×32”, and “split_64×64”.

“part_size” indicates the partition mode of 8×8 CUs. If “part_size” is equal to 1, it means 4×4

PUs have a smaller RD cost than 8×8 PUs, thus partition of 4×4 PUs is chosen. “split_16×16”

indicates if a 16×16 CU should be split into four 8×8 CUs. “split_32×32” indicates if a 32×32

CU should be split into four 16×16 CUs. “split_64×64” indicates if a 64×64 CU should be split

into four 32×32 CUs.

3.3.8 Context Model Updating

The proposed global context model consists of four levels. Level 0, 1, 2 and 3 are

dedicated for 8×8, 16×16, 32×32, and 64×64 CUs, respectively. All global context models are

stored in four register arrays, instead of on-chip SRAMs. Each register array saves the context

models of a specific CU size. Among the 16 syntax elements in Table 3.2, six of them contain

bypass coded bins, and ten contain regular coded bins and hence rely on context models. As

listed in Table 3.2, 84 context models are involved in rate estimation and each context model is

stored in a 7-bit register. Therefore, there are a total of 84×4 7-bit registers in the table for 4-level

www.manaraa.com

45

context models.

According to the input signal “CU_size”, context models for a specific CU size are

loaded into the local register arrays for syntax groups A-D. As been introduced in section 3.3.1,

the use of local context models reduces data access time and avoids improper update of the

global context models. For an 8×8 CU, its partition modes (i.e., PART_2N×2N and PART_N×N)

share the same initial values of context models. The global context models update begins after

the rate-distortion mode decision of a certain CU block. “CU_size” specifies which level of

global context models to update. If “CU_size” indicates it is a 16×16 CU, the corresponding

global context models belong to level-1. After comparing the RD costs of this 16×16 CU and its

four 8×8 sub-CUs, the new context models will be selected by mode decision to update both

level-1 and level-0 of the global context models.

Local_ctx_bufSyntax Binarizer

Ctx_model = mps_Model

Rate += mps_Rate

Ctx_idx

bin == mps?
Yes

Ctx_model = lps_Model

Rate += lps_Rate

No

Context model

loading

{State,mps} =

 Ctx_model

No

Last_bin?

Update(Rate, Ctx_model)

RD_cost calcuation

{State,mps, bin}{State,mps, bin}

CU_ cost = RD_cost

CU_ctx = Local_ctx_buf

Bit rate

No

Context model

updating

CU rate estimation start

Rate estimation

Local_ctx_buf =

Global_ctx_buf [cu_size]

Last CU

mode?

Yes

No

RD_cost < CU_cost

CU size decision

{CU_cost, CU_ctx, CU_size}

Global_ctx_buf [Best_CU_size] = Best_CU_ctx

{Best_CU_ctx, Best_CU_size}

Yes

No

Next_mode

bypass bin?

Bin

Yes

Rate += 1RD_cost

Yes

RD_cost

Syntax elements

C
U

 M
o

d
e
 D

e
c
isio

n

Fig. 3.12. Flow chart of context model loading and updating scheme for each CU.

The flow chart of context model loading and updating scheme of each CU is illustrated in

Fig. 3.12. For each CU, all of its prediction modes share the same set of initial context models,

which are firstly loaded from the global context model buffer into the local context model buffer

www.manaraa.com

46

at the beginning of the rate estimation process for each prediction mode. Then, the rate

estimation process of one CB starts, syntax binarizer first converts syntax elements into bins. For

a bypass bin, the total rate will increase by 1. For a regular bin, according to its context model

and bin value, its rate is estimated through look-up tables. Specifically, if a regular bin is equal to

the most probable symbol (mps), the total rate will increase by mps_Rate and the new context

model is derived from mps_Model. Otherwise, if a regular bin is equal to the least probable

symbol (lps), the total rate will increase by lps_Rate and the new context model is derived from

lps_Model. After the rate estimation for each bin, the new context model replaces the current

context model in the local context buffer. Then, after the rate estimation for all bins, the bit rate

and RD_cost for each prediction mode are derived and calculated. In this way, each CU

prediction mode corresponds to a particular set of updated local context models and an

associated RD_cost. Through comparing these RD costs among all prediction modes, the best

CU prediction mode which corresponds to the smallest RD_cost is found. The smallest RD_cost

and associated local context models are saved as “CU_cost” and “CU_ctx”, respectively. Next,

after CU size decision, the best CU size and the best CU context models are determined. These

results will be used to update the global context models.

3.4 IMPLEMENTATION RESULTS

Experiments have been conducted to evaluate the efficiency of the proposed rate

estimator. A benchmark containing only luma rate estimator has been established, while the

chroma rate is estimated by non-zero quantized coefficients. A strategy of mode reduction is first

applied to all PUs. For luma 4×4 PUs, three most probable modes, one regular mode (planar,

DC, vertical, horizontal), and three extra modes with minimal Hadamard cost are evaluated by

RDO. For luma 8×8, 16×16, and 32×32 PUs, three most probable modes and one extra mode

www.manaraa.com

47

with minimal Hadamard cost are sent to the RDO process. For luma 64×64 PUs, only the most

probable mode is checked by the RDO process. The best luma prediction mode will be selected

according to the RDO cost which is calculated using distortion and rate. Here rate is estimated by

the CABAC rate estimation algorithm. For all chroma PUs, four regular prediction modes,

including planar, DC, vertical, and horizontal modes, are supported. Chroma mode is selected by

a modified RDO algorithm, in which chroma rate is simply replaced by the number of non-zero

coefficients after quantization. Compared with HM 15.0, the benchmark introduces about 4.25%

BD-Rate and 0.24 dB BD-PSNR losses for 21 video test sequences with QP values (22, 27, 32

and 37). The proposed rate estimator is then applied to this benchmark and brings a decrease of

0.005% in BD-Rate and an increase of 0.0092dB in BD-PSNR gain against the benchmark. The

comparison results have been illustrated in Table 3.4. Thus, the luma-based CABAC rate

estimation is verified to be a reasonable approach that retains superior compression efficiency

and low complexity.

The proposed hardware architecture has been implemented in Verilog and synthesized in

FPGAs and ASICs. Since the proposed hardware architecture is identical to the table-based

CABAC bit rate estimation algorithm in HM 15.0 reference software except ignoring the flag

“split_cu_flag”, we first study the impact of ignoring this flag to rate estimation. A proposed

hardware design of luma-based rate estimator without “split_cu_flag” has been implemented

and compared with the luma-based CABAC rate estimation in HM 15.0. As shown in the last

two columns in Table 3.4, for all video test sequences, our proposed hardware architecture

decreases the BD-Rate by 0.005% and increases the BD-PSNR by 0.0092dB. Therefore, the

proposed hardware architecture improves the compression efficiency than the table-based luma-

only CABAC rate estimation in HM. Omitting “split_cu_flag” in the proposed hardware

www.manaraa.com

48

architecture improves the video compression efficiency and also results in lower hardware

complexity.

Table 3.4 Comparison of experimental results between the original rate estimation algorithm in

HM and the proposed modified rate estimation algorithm

Class Sequences

Rate Estimation in HM (luma-

only) vs. Rate Estimation in

Standard HM

Proposed Rate Estimator (luma-only,

without “split_cu_flag”) vs. Rate

Estimation in HM (luma-only)

BD-Rate[%] BD-PSNR[dB] ΔBD-Rate[%] ΔBD-PSNR[dB]

A
People On Street 3.4417 -0.1680 -0.1935 0.0093

Traffic 4.7199 -0.2160 -0.0913 0.0039

B

Park Scene 3.5296 -0.1358 -0.1252 0.0047

Kimono 3.0720 -0.0983 0.6355 -0.0221

Basketball Drive 3.6115 -0.0954 0.2915 -0.0079

BQ Terrace 2.4140 -0.0935 -0.0633 0.0023

Cactus 4.1528 -0.1300 -0.0126 0.0000

C

Basketball Drill 8.6861 -0.3730 -0.2156 0.0088

BQ Mall 3.3237 -0.1625 -0.1520 0.0075

Party Scene 3.4397 -0.2052 -0.0890 0.0051

Race Horses C 4.0470 -0.1967 -0.0425 0.0022

D

Basketball Pass 4.7913 -0.2554 -0.0645 0.0034

Blowing Bubbles 3.5473 -0.2011 -0.0740 0.0042

BQ Square 3.0824 -0.1945 -0.0444 0.0026

Race Horses 5.1280 -0.4363 -0.1001 0.1752

E

Kristen And Sara 4.1179 -0.1883 0.2092 -0.0096

Four People 3.2739 -0.1698 -0.0528 0.0024

Johnny 2.6748 -0.1067 0.1167 -0.0045

 F

Slide Editing 5.1133 -0.6313 -0.0548 0.0072

Slide Show 7.0305 -0.5850 0.0217 -0.0010

China Speed 6.0791 -0.4702 -0.0034 0.0000

Average value 4.25 -0.24 -0.005 0.0092

For various sizes (4×4 PUs, 8×8 CUs, 16×16 CUs, 32×32 CUs, and 64×64 CUs) and QP

values (22, 24, 26, 28, 30, 32, 34 and 37), Table 3.5 shows the obtained PSNR and the required

number of clock cycles to accomplish rate estimation using the proposed rate estimator.

Experimental results of all test sequences in class A and B are provided. In time-constrained,

high-performance video coding applications, this table is useful for fast CU decision in real-time

operation. For example, based on the PSNR expectation and the maximum allowable time to

process, the best CU size can be roughly determined based on Table 3.5. For another example, if

www.manaraa.com

49

QP 22 is selected for sequence “People on Street”, if one 16×16 CU and four sub 8×8 CUs result

in the same RD cost, the 16×16 CU needs 145 clock cycles for rate estimation, while four sub

8×8 CUs need 162 clock cycles for rate estimation. From a processing time point of view, this

16×16 CU is advantageous since 17 clock cycles are saved.

Table 3.5 Experimental results of PSNR and number of clock cycles for different PU/CU sizes

and QP values of our proposed design

 QP = 22 QP = 24

Class Sequence PSNR 4×4 8×8 16×16 32×32 64×64 PSNR 4×4 8×8 16×16 32×32 64×64

A
People on

Street 43.28 11.3 40.4 144.9 560 2232 42.40 10.8 35.6 124.0 480 1912

A Traffic 43.47 11.0 37.4 131.1 512 2043 42.65 10.4 33.4 111.3 436 1740

B
Basketball

Drive 43.28 11.8 53.0 184.6 646 2574 42.40 10.2 37.5 123.1 462 1851

B BQ Terrace 43.65 14.1 63.6 240.0 937 3756 42.90 13.1 58.3 217.3 850 3401

B Cactus 42.92 13.5 62.9 244.1 931 3720 41.91 11.8 49.7 190.6 760 3035

B Kimono 44.00 10.0 27.6 89.6 336 1313 43.36 9.4 22.0 58.3 232 904

B Park Scene 42.65 12.0 48.4 182.6 722 2892 41.54 11.0 40.7 145.1 594 2380

 QP = 26 QP = 28

Class Sequence PSNR 4×4 8×8 16×16 32×32 64×64 PSNR 4×4 8×8 16×16 32×32 64×64

A
People on

Street 41.61 10.2 31.0 105.0 405 1611 40.93 9.7 27.3 88.4 341 1357

A Traffic 41.84 9.9 29.7 94.4 365 1457 41.08 9.4 26.6 79.9 306 1222

B
Basketball

Drive 41.66 9.1 27.1 81.7 308 1249 41.05 8.5 22.4 60.5 220 901

B BQ Terrace 42.13 11.9 50.8 188.2 739 2952 41.39 10.9 43.2 157.1 627 2500

B Cactus 40.90 10.5 37.6 136.2 579 2316 39.98 9.7 30.8 100.1 416 1664

B Kimono 42.69 8.9 19.6 43.5 165 650 41.99 8.6 18.4 36.0 127 506

B Park Scene 40.40 10.3 35.2 118.8 481 1929 39.37 9.8 30.9 99.0 393 1577

 QP = 30 QP = 32

Class Sequence PSNR 4×4 8×8 16×16 32×32 64×64 PSNR 4×4 8×8 16×16 32×32 64×64

A
People on

Street 40.35 9.2 24.5 75.3 288 1147 39.63 8.8 22.0 62.8 242 964

A Traffic 40.44 9.0 24.0 68.5 258 1030 39.63 8.7 21.7 57.8 217 866

B
Basketball

Drive 40.53 8.1 19.8 48.9 175 719 39.89 7.8 17.9 40.1 144 595

B BQ Terrace 40.77 10.2 36.9 131.8 527 2102 39.97 9.6 31.9 109.5 442 1765

B Cactus 39.19 9.2 26.6 80.8 320 1287 38.27 8.8 23.4 66.0 257 1035

B Kimono 41.41 8.3 17.7 31.2 103 412 40.63 8.1 17.0 27.2 86.1 347

B Park Scene 38.46 9.3 27.2 83.2 322 1290 37.45 8.9 23.7 68.1 260 1039

 QP = 34 QP = 37

Class Sequence PSNR 4×4 8×8 16×16 32×32 64×64 PSNR 4×4 8×8 16×16 32×32 64×64

A
People on

Street 38.90 8.5 20.1 52.6 201 804 37.98 8.1 17.9 40.8 153 618

A Traffic 38.80 8.4 19.9 49.2 180 723 37.76 8.1 17.7 38.6 137 551

B
Basketball

Drive 39.22 7.7 16.6 34.1 120 496 38.39 7.5 15.4 27.2 92 381

B BQ Terrace 39.14 9.1 28.2 92.2 370 1474 38.07 8.6 23.8 71.8 280 1119

B Cactus 37.37 8.4 21.1 55.1 208 842 36.26 8.1 18.4 42.2 153 621

B Kimono 39.79 7.9 16.4 24.2 73.7 298 38.69 7.7 15.5 20.8 59.5 241

B Park Scene 36.46 8.5 20.9 55.7 206 825 35.28 8.1 17.9 40.7 145 578

www.manaraa.com

50

Fig. 3.13. The required number of clock cycles varying with QP values for two test sequences

Fig. 3.14. Processing time-saving percentage (with respect to PU 4×4) varying with QP values

for two test sequences

For each CU size, Fig. 3.13 plots how the required number of clock cycles per pixel (i.e.,

the hardware processing time for rate estimation per pixel) varies with QP values. Regardless of

CU size, the required number of clock cycles per pixel drops drastically with the increase of QP

value for both video test sequences. This is because a larger QP value leads to less non-zero

coefficients after quantization step. Thus, fewer syntax elements go through the binarization

process. In addition, updating context models is also less frequent. Therefore, the required

processing time per pixel for rate estimation is reduced as QP increases.

Fig. 3.14 plots time-saving percentages of CUs from 8×8 to 64×64 with respect to PUs

4×4 for different QP values. Despite all CU sizes with larger QP values require less processing

time of rate estimation, it is observed that the curves for CUs 16×16, 32×32 and 64×64 are

www.manaraa.com

51

almost identical with the most notable time-saving. Therefore, for a given QP value, the

throughput of our proposed rate estimator is the highest for CUs 16×16, 32×32 and 64×64. This

observation is explained as follows. As we know, the bit rate is composed of coded bits of all

quantized coefficients and header syntax. Quantized coefficients scale down with a larger QP

value, while header syntax does not. With a larger quantization step in high QP scenarios, a

smaller number of coded bits of quantized coefficients is obtained. Thus, header syntax gradually

dominates the processing time of bit rate estimation for larger CUs.

Table 3.6 Resource consumption comparison of rate estimation hardware designs.

Architecture Pastuszak [29] This work (for a proposed rate estimator instance)

FPGA Platform
Arria II GX

[ALUT]

Arria II GX

[ALUT + Registers]

Altera Stratix V GX

[ALUT + Registers]

Logic Gate Count
8441 (for main reconstruction loop)

3909 (for 4×4 reconstruction loop)
3779 + 1304 * 3764 + 1262 **

Frequency (MHz)
100 (for main reconstruction loop)

200 (for 4×4 reconstruction loop)
115 208

Supported PU/CU

sizes
8×8, 16×16, 32×32 CUs 4×4 PU, 8×8, 16×16, 32×32, 64×64 CUs

*197 ALUTs and 442 registers are used for global context models and initialization logic, which are shared by multiple rate estimator instances
**166 ALUTs and 393 registers are used for global context models and initialization logic, which are shared by multiple rate estimation instances

The proposed hardware architecture of the rate estimator is synthesized for Arria II GX

and Altera Stratix V GX FPGA platforms. The resource consumption, frequency, rate estimation

performance and supported TU/CU sizes are provided in Table 3.6. The proposed highly-parallel

rate estimation architecture has also been synthesized and implemented in an ASIC design using

TSMC 90nm technology as shown in Table 3.7. The results of our proposed design are obtained

from the Synopsys Design Compiler under the normal corner of TSMC 90nm process, at a 1.0V

supply voltage and room temperature. There are a total of 13 rate estimators being instantiated in

order to satisfy the throughput requirement of the system (3840×2160p @ 30fps). The numbers

of rate estimators corresponding to 4×4, 8×8, 16×16, 32×32, and 64×64 PUs are 7, 2, 2, 1, and 1

respectively. An HEVC intra encoder hardware is also implemented to evaluate the entire intra

www.manaraa.com

52

encoder throughput using our proposed rate estimators. As shown in Table 3.7, the entire intra

encoder system sustains the real-time encoding of 3840×2160p @ 30fps.

Table 3.7 Hardware design comparison of rate estimators

Hardware

Architecture
[23] [28] [29] [32] [33] This work

Rate Estimation

Algorithm

Magnitude of

non-zero

coefficients

Binary

classification of

N×N quantized

coefficients

Bin counting CFBAC

Parallelized

CABAC context

adaption

Highly-parallel

CABAC without the

syntax

“split_cu_flag”

Rate model

preprocessing
Required Required Required No need No need No need

Video Test

Sequences
8 in class A-C 21 in Class A-E

24 in Class A-E,

4K
N/A Class A-F 21 in Class A-E

Technology N/A TSMC 90nm TSMC 90nm TSMC 28nm SMIC 55nm TSMC 90nm

Area (k gate) N/A N/A 53.1

56.8 (for

binarization) +

120.4 for (CFBAC

Rate estimator)

N/A
197 (for 13 rate

estimator instances)

Power (mW) N/A N/A 13.3 N/A N/A 76

Frequency

(MHz)
N/A 357

200 (for main

reconstruction

loop)

400 (for 4×4

reconstruction

loop)

312 294 320

Supported

CU/PU sizes
N/A

4×4 ~ 32×32 PU

8×8 ~ 32×32

CU

8×8 ~32×32 CU
16×16

~ 64×64 CU

4×4 ~ 32×32 PU

8×8 ~ 32×32

CU

4×4 ~ 64×64 PU

8×8 ~ 64×64 CU

Relationship

among clock

cycles, QP, CU

size, PSNR

No No No No No Yes, in table V

Rate estimation

performance

Low

BD-Rate

[6.27%]

BD-PSNR

[-0.26dB]

Low

BD-Rate

[4.53%]

BD-PSNR

[-0.20dB]

Low

BD-Rate

[2.11%]

BD-PSNR

[-0.091dB]

Medium

BD-Rate

[1.1%]

BD-PSNR

[N/A dB]

Medium

BD-Rate

[0.5%]

BD-PSNR

[N/A dB]

High

BD-Rate

[-0.005%]

BD-PSNR

[0.0092dB]

Encoder

throughput with

the specific rate

estimator

N/A
1920×1080

@44fps

3840×2160

@30fps

8192×3420

@30fps

1920×1080

@60fps

3840×2160

@30fps

Table 3.7 summarizes the comparison of this work with existing rate estimation hardware

designs in the literature. The algorithm for rate estimation, implementation technology, area,

power, frequency, supported TU sizes, the relationship among clock cycles, QP, CU size and

www.manaraa.com

53

PSNR, and rate estimation accuracy are included to demonstrate the benefits of our proposed

design. The non-zero coefficient counting algorithm in [23, 28] and the bin counting algorithm in

[29] result in lower accuracy, because they are incompatible with the default CABAC-based rate

estimation approach. These works [23, 28, and 29] require preprocessing to establish simplified

rate estimation models. Due to these simplified rate models are experimentally determined from

limited video test sequences, there is no rigid theoretical proof to bind the rate estimation

accuracy in general video scenarios. Hence, the accuracy of simplified rate estimation model

may vary widely depending on video contents. The CFBAC algorithm in [32] utilizes fixed

context models without adaptive updates. No design effort has been reported in [32] to improve

the level of parallelism for rate estimation. The rate estimator hardware costs 56.8k gates for

binarization and 120.4k gates for CFBAC rate estimation. Compare to our hardware cost (i.e.,

197k gates), our proposed design results in an increase of 11% in hardware resources.

Meanwhile, our proposed design leads to a decrease of 0.005% in BD-Rate, while the work [32]

obtains an increase of 1.1%. The CABAC architecture in [33] improves the throughput of

CABAC-based rate estimator by context adaption of 2 bottleneck syntax elements, while the

remaining 14 syntax elements are still processed in a serial manner. The required hardware cost

and power consumption in [33] are not reported. Besides, 64×64 CUs are not supported in [33],

while it is included in our proposed rate estimator. In contrast with the reference [29], under an

iso-throughput condition (i.e., 3840×2160 @30fps), even though the hardware area and power

consumption of our rate estimator instances are worse. As we have discussed earlier, the design

in [29] requires rate model preprocessing, since the parameters in the rate estimation model need

to be determined through statistical data collection and curve fitting. Such a data-driven

statistical rate estimation model cannot guarantee good accuracy of bit rate estimation for any

www.manaraa.com

54

given video file. In contrast, the proposed CABAC rate estimator fully conforms to the

computational theory and procedure of CABAC bit estimation (i.e., binarization and context-

adaptive probability modeling), so good rate estimation accuracy can be ensured and the

estimation accuracy may change very slightly with video contents. Therefore, the rate estimation

accuracy and reliability of our proposed design are much improved.

3.5 CONCLUSION

Despite the great bit rate estimation performance, hardware implementations of CABAC

bit rate estimator have been impeded for a long time due to its low throughput. To deal with this

challenge, we propose a highly-parallel hardware architecture of the CABAC rate estimator in

this chapter. Details of rate estimation algorithm, methodology, circuit diagram, and hardware

implementation results are described and discussed. Compared with existing related works in the

literature, this proposed architecture demonstrates significant advantages in rate estimation

accuracy and reliability, with the overhead of a relatively larger chip area and higher power

consumption. This proposed design supports resolutions up to 3840×2160 @30fps with a

decrease of 0.005% in BD-Rate. To our best knowledge, this is the first study that reports a high-

throughput CABAC rate estimator with the best rate estimation performance.

www.manaraa.com

55

CHAPTER 4

PROPOSED HEVC INTRA ENCODER

In this chapter, we propose efficient algorithm adaptations and fully-parallel hardware

architecture of H.265/HEVC intra encoder, which is capable of sustaining real-time compression

of videos at 4K@30fps. The proposed algorithm adaptations are hardware-oriented and aim at

dramatically reducing the coding complexity of H.265/HEVC intra coding. Fully-parallel

hardware architecture of H.265/HEVC intra encoder that realizes parallel processing of four

different PU sizes simultaneously is proposed. To our best knowledge, this is the first work to

use 4-parallelism in intra prediction. Along with complexity reduction algorithms, the proposed

intra encoder achieves a 27% workload reduction with 4.39% and 0.21dB coding performance

degradation on average in BD-Rate and BD-PSNR, respectively. Hardware implementation in

FPGA and ASIC shows our design can run at 120MHz and 320MHz, respectively. Compared

with the state-of-the-art designs, our proposed design demonstrates advantages in computational

complexity, bit rate, video quality, throughput, reliability, and flexibility.

4.1 INTRODUCTION

With the growing demand for superior video compression performance for UHD video

applications, HEVC was proposed to replace its predecessor H.264. HEVC standard was devised

to reduce more than 50% bit rate at the same level of video quality. However, the increased

complexity and data/timing dependency has drastically impeded its throughput in hardware

implementation. It is certain that the new features (e.g., coding tree unit, quad-tree structure,

extended prediction directions, expanded block sizes, etc.) in HEVC bring about excellent

coding performance compared with previous standards. Despite the research efforts made in

software algorithms and hardware architectures, so far, the optimization of HEVC intra encoders

www.manaraa.com

56

has not been widely explored, especially in hardware friendly algorithm adaptations.

As introduced in the previous chapter, there are two major bottlenecks that impede the

throughput of HEVC intra encoders. The first one is the increased computation. The new features

of HEVC make the rate-distortion optimization process extremely complex and require lots of

computation [34]. For example, in the full search scheme, each CTU partition has to be estimated

to find the best partition, and each PU has to be traversed 35 times to find the best prediction

mode. However, the original RDO process consists of a series of processes such as prediction,

transform, quantization, inverse quantization, inverse transform, reconstruction, rate estimation,

and distortion calculation. The RDO process is not only computation-intensive but also time-

consuming [35]. Moreover, the strict time and throughput requirements for practical video

encoders make it infeasible to perform exhaustive mode and partition searching [36-38].

Therefore, it is indispensable to develop efficient algorithms to reduce HEVC’s computational

complexity, while retaining excellent video compression efficiency. The second bottleneck is the

strong data/timing dependency during the RDO process. For example, intra prediction of each

block relies on reference pixels, which are derived from reconstructed pixels of neighboring

blocks. This data dependency between coding blocks leads to low-throughput serial processing

of coding blocks. The low throughput CABAC based rate estimation is also caused by context

model dependency between syntax elements. In addition, the CU size mode decision depends on

not only the RD cost of current CU but also RD cost of sub CUs. All those dependencies have

significantly affected HEVC’s throughput [39-45]. Thus, it is worth investigating on how to

relieve the data/timing dependency in various computational tasks.

In this chapter, we propose a new HEVC intra encoder that computes the full cycle of

intra prediction, transform, quantization, inverse quantization, inverse transform, reconstruction,

www.manaraa.com

57

and rate estimation in a fully parallel manner. The proposed intra encoder consists of two parts:

efficient HEVC algorithm adaptations and highly-parallel hardware architecture design. The

former aims to reduce the computational complexity in the algorithm level, while the latter

maximizes the potential of parallelism to improve the overall throughput of intra encoder. The

proposed intra encoder supports all CU/PU/TU sizes and 35 prediction modes. Compared with

HM-15.0, the proposed algorithm adaptations lead to a 27% computation reduction with an

average loss in BD-Rate and BD-PSNR is 4.39% and 0.21dB, respectively. To address the

bottleneck of data/timing dependency, a fully-parallel intra encoder architecture utilizing 4-

parallelism in intra prediction is proposed. Intra prediction of four different size PUs from 4×4

to 32×32 will be performed simultaneously in 4 prediction engines (PE) to greatly improve

prediction throughput. Highly pipelined computational schemes are designed and employed in

each PE to maximize RDO throughput. Moreover, the proposed high throughput table-based

CABAC rate estimator in chapter 3 is incorporated in the proposed intra encoder to further

increase RDO performance. Experimental results show the proposed intra encoder is capable of

handling real-time video compression for 4K videos at 30fps.

The rest of this chapter is organized as follows. The proposed efficient algorithm

adaptations are described in section 4.2. Section 4.3 describes the hardware architecture and

timing diagrams. In section 4.4, system implementation and results are presented and compared

with the state-of-the-art designs in the literature. Finally, section 4.5 concludes this chapter.

4.2 PROPOSED EFFICIENT ALGORITHM ADAPTATIONS

To reduce the computational complexity of HEVC intra encoders and make a better

tradeoff between complexity and performance, we propose four hardware-oriented algorithm

adaptations for HEVC intra prediction. All proposed algorithm adaptations have been validated

www.manaraa.com

58

in HM-15.0 reference software and comparison has been made to evaluate compression

performance. Compared with HM-15.0, our approach achieves a workload reduction of 27% on

average with a 4.39% BD-Rate increase and 0.21dB BD-PSNR decrease [47]. The resulting

compression efficiency of proposed algorithms has been illustrated in Table 4.1. Details of each

algorithm adaptation are elaborated and discussed in the following sub-sections.

Table 4.1 Losses in compression efficiency for successive modifications: PU chroma mode

preselection (M1), PU luma mode preselection (M2), Modified CU mode decision (M3),

simplified CABAC rate estimator (M4).

 M1 M1+M2 M1+M2+M3 M1+M2+M3+M4

Class Sequences
BD-Rate

[%]

BD-PSNR

[dB]

BD-Rate

[%]

BD-PSNR

[dB]

BD-Rate

[%]

BD-PSNR

[dB]

BD-Rate

[%]

BD-PSNR

[dB]

A
 People On Street 1.38 -0.07 2.25 -0.12 2.93 -0.15 3.31 -0.17

Traffic 3.07 -0.15 3.22 -0.16 4.10 -0.20 4.49 -0.22

 B

Park Scene 1.21 -0.05 1.05 -0.05 1.71 -0.08 2.04 -0.09

Kimono 1.71 -0.05 0.89 -0.03 2.10 -0.06 2.92 -0.09

Basketball Drive 2.82 -0.08 3.00 -0.09 3.96 -0.12 4.33 -0.13

BQ Terrace 1.07 -0.05 1.49 -0.07 1.86 -0.09 1.95 -0.09

Cactus 2.36 -0.08 2.90 -0.10 3.63 -0.13 3.87 -0.14

C

Basketball Drill 9.01 -0.44 11.28 -0.55 11.94 -0.58 12.12 -0.59

BQ Mall 1.88 -0.10 2.74 -0.14 3.13 -0.16 3.30 -0.17

Party Scene 1.44 -0.11 2.61 -0.20 2.70 -0.20 2.76 -0.21

Race Horses 3.26 -0.19 4.15 -0.25 4.75 -0.28 4.97 -0.29

D

Basketball Pass 4.17 -0.26 5.42 -0.33 5.83 -0.36 6.02 -0.37

Blowing Bubbles 1.86 -0.14 3.49 -0.26 3.57 -0.26 3.63 -0.27

BQ Square 0.32 -0.02 2.17 -0.17 2.34 -0.18 2.37 -0.18

Race Horses 4.01 -0.27 5.51 -0.36 5.95 -0.39 6.12 -0.40

E

Kristen And Sara 3.90 -0.16 4.69 -0.20 5.80 -0.24 6.28 -0.26

Four People 1.57 -0.08 2.14 -0.10 2.94 -0.14 3.33 -0.16

Johnny 3.38 -0.12 3.77 -0.13 4.81 -0.17 5.31 -0.19

F

Slide Editing 1.40 -0.21 2.37 -0.35 2.48 -0.36 2.48 -0.36

Slide Show 3.85 -0.34 5.90 -0.52 6.66 -0.59 6.72 -0.59

China Speed 2.10 -0.19 3.82 -0.34 4.06 -0.36 4.12 -0.37

4K

Beauty 0.13 -0.004 0.52 -0.01 4.07 -0.07 5.06 -0.08

Bosphorus 1.91 -0.05 1.09 -0.03 3.82 -0.10 6.19 -0.16

Honey Bee 0.56 -0.02 0.93 -0.03 2.18 -0.02 2.31 -0.04

Jockey 0.52 -0.02 1.05 -0.02 3.69 -0.04 4.54 -0.08

Ready Steady Go 2.59 -0.06 2.15 -0.05 3.93 -0.09 4.84 -0.11

Shake & Dry 0.11 -0.004 0.10 -0.005 0.13 -0.006 1.84 -0.04

YachtRide 3.55 -0.10 3.08 -0.09 4.69 -0.13 5.79 -0.16

Average value 2.33 -0.12 2.99 -0.17 3.92 -0.20 4.39 -0.21

4.2.1 PU Chroma Mode Preselection

As each PU contains one luma and two associated chroma blocks, specific mode

preselection schemes are proposed to reduce the computational complexity for luma and chroma

www.manaraa.com

59

blocks, respectively. Fewer preselected prediction modes usually result in a less complex RDO

process but more degradation in coding efficiency. Considering the tradeoff between coding

efficiency and computational complexity, an appropriate set of prediction modes is assigned to

each PU. As it takes more clock cycles to process larger PUs, fewer modes are selected for larger

PUs to meet the same timing budget in different PEs.

In the standard algorithm of H.265/HEVC, the RDO process of PU chroma blocks

contains five prediction modes, including one derived mode from the luma RDO process and

four regular modes (i.e., DC, Planar, Vertical, and Horizontal). If the derived luma mode

happens to be within the four regular modes, the angular mode 34 should be used. Efficient

hardware implementation of prediction and transformation is easily designed for these known

regular modes. However, for the unknown derived mode, chroma prediction cannot start until the

completion of the luma RDO process. This data & timing dependency is an obstacle to efficient

hardware implementation in chroma mode prediction. In order to eliminate this data dependency,

our chroma mode preselection scheme excludes this derived luma mode. Thus, the best chroma

mode is selected only from the four regular modes. Moreover, in order to further reduce

computational complexity, the chroma rate is estimated based on the number of non-zero

coefficients after quantization stage [21]. This algorithm adaptation enables a fast RDO process

for chroma blocks. According to the experimental results in Table 4.1, the algorithm adaptation

for chroma mode reduction causes a video quality loss (an average BD-PSNR of 0.12dB) and a

bit rate increase (an average BD-Rate of 2.33%).

4.2.2 PU Luma Mode Preselection

In the proposed PU luma mode preselection algorithm, most probable modes (MPMs)

and Hadamard transform are used for low cost and fast computation. For 64×64 PUs, only the

www.manaraa.com

60

first MPM defined by the HEVC standard is selected for RDO, so no mode decision is required.

However, it is still needed to calculate the RD cost of 64×64 PUs, since the cost is useful for

later CU partition decisions. For 32×32 PUs, in addition to three MPMs, one mode that

corresponds to the least Hadamard cost out of 35 prediction modes is selected. For 16×16 and

8×8 PUs, the RDO process involves three MPMs, one regular mode, and one Hadamard mode

that is determined by the minimum Hadamard cost. No common mode is shared among the

MPMs, regular mode, and Hadamard mode. Because 4×4 PUs correspond to the largest number

of blocks in a CTU, RDO processing of 4×4 PUs is the bottleneck for timing and hardware

implementation. Moreover, 4×4 PUs are indispensable because of their excellent compression

performance for shaper detail-rich video sequences. Thus, it is critical to pre-select appropriate

prediction modes for 4×4 PUs. In the proposed algorithm, seven prediction modes are selected as

candidate modes for 4×4 PUs, including MPMs, angular modes, and one mode selected from the

four regular modes. These angular modes are selected from 12 angular modes of 2, 4, 6, 8, 11,

15, 19, 23, 28, 30, 32, and 34 based on Hadamard cost. Experimental results in Table 4.1 show

that the PU chroma and luma mode preselection leads to an average increase of 2.99% in BD-

Rate and an average decrease of 0.17dB in BD-PSNR.

4.2.3 Modified CU Mode Decision

According to the quad-tree structure in H.265/HEVC, each CU is allowed to be split into

four smaller CUs until reaching the minimum CU size. In order to find the best CU partition, CU

mode decision is performed. In the HM-15.0 software, the CU-level rate estimation does not

directly use the sum of luma and chroma rates computed in the prior luma and chroma RDO

processes. Instead, the pre-selected best luma and chroma modes are used in the HM-15.0 to

calculate the CU-level rate, followed by the CU-level RD cost calculation in the CU mode

www.manaraa.com

61

decision. This CU-level rate estimation is time-consuming, and it is difficult to implement in

hardware architectures. To address this challenge, we propose a low-complexity coding unit

mode decision (CUMD) scheme, which computes the RD costs of CU and sub-CU blocks and

then determines the best CU partition. Instead of recalculating RD costs of CUs, our CUMD

scheme reuses the derived RD costs from prior luma and chroma RDO processes. This algorithm

adaptation reduces computational workload and hardware complexity. Table 4.1 shows that the

algorithm adaptation for modified CU mode decision causes an increase of 0.93% in BD-Rate

and a decrease of 0.03dB in BD-PSNR.

4.2.4 Simplified CABAC Rate Estimation

In the HM-15.0 software, the CU rate is estimated by utilizing the look-up-table (LUT)

based CABAC algorithm, which is hardware-friendly and easy to implement. However, because

of its strong data dependency in serial syntax processing, the low throughput of CABAC rate

estimation prevents it from hardware implementation in UHD video coding systems. Instead, due

to less data dependency and high throughput, approximate rate estimation algorithms (e.g., bin

counting [29]) are proposed as alternative approaches. Yet, these alternative rate estimation

algorithms are based on empirical correlations between bit rate and other parameters (e.g., the

number of bins in [29]). As been discussed in [29], these estimated correlations vary with

quantization parameter (QP) and video sequences. As a result, with a temporal and spatial

variability of QP and video sequences, these empirical rate estimation algorithms cannot

guarantee accurate and reliable performance. In contrast, the CABAC based rate estimation

algorithm conducts the same binarization and context-adaptive probability modeling as CABAC

bitstream encoder, thus it theoretically ensures good accuracy and reliability. Here, we focus on

efficient algorithm adaptations for high-throughput CABAC rate estimation.

www.manaraa.com

62

In this work, three hardware-oriented algorithm adaptations are proposed to improve

throughput in CABAC based rate estimation. The first adaptation is to round the floating-point

parameter λ, which plays an important role in the Lagrangian equation to tradeoff video quality

and compression ratio. In order to avoid hardware-unfriendly arithmetic calculations, a look-up

table is established to represent the correspondence between the integer values of λ and QP. The

second algorithm adaptation takes place in luma mode rate estimation. A syntax element

“split_cu_flag” is proposed to be omitted from luma rate estimation, due to the following

considerations. From an algorithm point of view, this flag only involves in the comparison

between CU and sub-CUs. This syntax element is not involved in rate-distortion comparison

among various prediction modes of a given CU size. Removal of this syntax element from the

rate estimation procedure reduces computational complexity and simplifies hardware

implementation. The third algorithm adaptation reduces the computational workload of CABAC

rate estimation. For example, in the HM-15.0 reference software, rate estimation is executed

twice for four 4×4 PUs in an 8×8 CU. The first time occurs in intra prediction, where data

dependency of CABAC context models is ignored and the same initial context models are used

for each 4×4 PU. Then, after the best prediction modes are selected for four 4×4 PUs, the total

rate of four 4×4 PUs within this 8×8 CU is estimated again. At this same, data dependency of

context models for four 4×4 PUs is taken into account. In this default manner, repeated rate

estimation is very time consuming and hardware unfriendly. In order to reduce computational

workload, in our proposed algorithm, the rate estimation of four 4×4 PUs is calculated only once,

and data dependency of CABAC context models is considered. The experimental results in Table

4.1 show that the simplified CABAC based rate estimation algorithm leads to an increase of

0.47% in BD-Rate and a decrease of 0.01dB in BD-PSNR.

www.manaraa.com

63

4.3 PROPOSED HARDWARE ARCHITECTURE AND TIMING DIAGRAM

Fig. 4.1 shows the hardware architecture overview of proposed fully-parallel

H.265/HEVC intra encoder, which supports 8×8 ~ 64×64 CUs, 4×4 ~ 64×64 PUs, 4×4 ~ 32×32

TUs, and two transformations (Discrete Sine Transform (DST) and DCT). DST is dedicated to

4×4 luma blocks, while DCT is adopted in transform coding of remaining TUs. All functional

modules in this architecture can be divided into two groups: prediction engine (PE) modules and

non-prediction engine (Non-PE) modules. Four parallel PEs (PE0~PE3) perform a series of data

processing including mode prediction, transformation, quantization, inverse quantization, inverse

transformation, reconstruction, CABAC based rate estimation, distortion estimation, and

simplified block mode decision (SBMD). Each PE is dedicated to one or two specific PU sizes,

as denoted in Fig. 4.1. According to the statistics about the probability proportion of various PU

sizes in [36], the percentage for 64×64 and 32×32 PUs is only 1%. Hence, it is cost-effective to

share PE3 for 32×32 and 64×64 PUs. These Non-PE modules perform less computational tasks

of reference pixel storage and preparation, neighboring prediction mode storage and fetch, MPM

generation, original pixel loading, and CABAC entropy coding.

In this fully-parallel architecture, data dependency among different sizes of PU blocks is

mitigated. Therefore, four PEs simultaneously process all sizes of prediction blocks. Moreover,

computational tasks inside each PE are pipelined and well scheduled to maximize processing

throughput. Although four PEs are implemented, each module is carefully designed to keep low

hardware cost. For example, 1D unified DCTs and iDCTs are used for 16×16 and 32×32 TUs to

reduce hardware cost for transformation. Due to alleviated data dependency and timing

constraints in the proposed hardware architecture, this design is very flexible to realize

algorithm-level modifications or extensions, such as change of PU preselection modes, revise of

www.manaraa.com

64

transformation or quantization blocks, and implementation of new high-throughput rate

estimation algorithms. In contrast, the existing hardware architecture in the state-of-the-art

design [29] operates in an interleaved processing manner. Due to the inherently strict data

dependency and tight timing schedule, it is more challenging to make efforts to modify or extend

it.

CTU_

Orig_MEM

Orig_Pixel

_Loader

Ref_Gen
CTU_

Ref_MEM

MPM+REG

Mode

Angular

Selection

Prediction

Transform

Transpose

Buffer

Quant

Inverse

Quant

Inverse

Transform

M
U

X

Transpose

Buffer

Recon & Dist

Estimation

Coeff

_MEM

Rate

Estimation

Coding Unit Mode Decision

SBMD
NPM_

Buffer

Block_Ref

_Buffer

MPM Generation

PE0 (4×4 PU)

 PE1 (8×8 PU)
PE2 (16×16 PU)

PE3 (32×32 and 64×64 PUs)

Non-PE

Modules

Coeff&

Header

_MEM

CABAC

Entropy

Encoder

CABAC_Coeff_Load_Ctrl

Bit

stream

Fig. 4.1. Hardware architecture of the proposed fully-parallel H.265/HEVC intra encoder.

4.3.1 Design Details of Non-PE Modules

1) Original Pixel Loading and Reference Pixel Generation: Two on-chip memory blocks

(CTU_Orig_MEM and CTU_Ref_MEM) are fed to the proposed intra encoder. As the proposed

design supports 4:2:0 video format, a CTU contains one 64×64 luma block and two 32×32

chroma blocks. Loading CTUs from an external memory into the CTU_Orig_MEM is beyond

the scope of this chapter. The CTU_Orig_MEM stores original pixels of two CTUs, which are

12288 8-bit pixels. Thus, the size of CTU_Orig_MEM is 12 KB. The reference pixels of CTUs

are stored in CTU_Ref_MEM. As shown in Fig. 4.2(a), all pixels in the yellow region should be

www.manaraa.com

65

stored in the CTU_Ref_MEM before the current CTU begins to process. The number of CTU

reference pixels is determined by video resolution. For example, 3840+64 reference pixels are

stored for luma prediction in 4K videos. Assume the video format is 4:2:0, the number of

reference pixels for each chroma component in 4K videos is 1920+32. As a result, the required

size of CTU_Ref_MEM is about 7.6 KB.

CTU

Left

CTU

U_L

Curr

CTU

CTU

Upper

CTU

U-R

(a) CTU reference pixels (b) Block reference pixels inside 4 4×4 PUs of an 8×8 CU

0 0 1

0 1

2

0 1

2 3

Fig. 4.2. CTU_Ref_MEM for (a) reference pixels of a current CTU, (b) reference pixels in four

4×4 PUs of an 8×8 CU.

In order to minimize latency caused by loading pixels from CTU_Orig_MEM, the

Orig_Pixel_Loader module is designed to load 16 pixels per clock cycle and store them in an

internal 32×32 register array. These loaded pixels are fed to 4 PEs for intra prediction. The use of

Orig_Pixel_Loader increases the throughput of intra prediction. The Block_Ref_Buffer module

stores reference pixels of prediction blocks inside a CTU. Fig. 4.2(b) illustrates the process

sequence of four 4×4 PUs in an 8×8 CU and corresponding pixels to be stored as reference

pixels. For example, for the first 4×4 PU with index 0, 7 pixels need to be stored for intra

prediction of the successive PUs. As shown in Fig. 4.2(b), the maximum number of reference

pixels that need to be stored in the Block_Ref_Buffer module for 4×4 PUs is 15. Similarly, the

number of pixels to be stored for other luma PU sizes can be deduced and listed in Table 4.2.

Particularly, since a 64×64 luma PU is performed based on four 32×32 luma PUs, the temporal

prediction results of each 32×32 luma PU are stored. The final mode decision of a current CTU

leads to updating the CTU reference pixels in CTU_Ref_MEM. The right-column pixels of a

www.manaraa.com

66

current 64×64 CTU are used as reference pixels for the next CTU on its right side, while the

bottom-row pixels are referred by CTUs below the current 64×64 CTU line. Hence, a total

number of 127 pixels are updated into CTU_Ref_MEM. Regarding the register requirements for

chroma PUs, each chroma PU needs the same number of reference registers as luma PUs except

32×32 PUs. In a 64×64 CTU, there are four 32×32 luma PUs, while it has only one 32×32

chroma U (Cb) block and one 32×32 chroma V (Cr) block. Thus, for each 32×32 chroma block,

it only needs 63 registers to store reference pixels. As 4:2:0 video format is used in this work,

there is no 64×64 chroma PUs involved.

Table 4.2 Required number of registers in Block_Ref_Buffer.

PU Size Luma (Y) Chroma (Cb) Chroma (Cr)

4×4 15 15 15

8×8 31 31 31

16×16 63 63 63

32×32 127 63 63

64×64 127 N/A N/A

2) MPM Generation: The PU mode decision selects the best prediction mode among all

candidates. The selected mode of a current PU is used to generate three Most Probable Modes

(MPMs) for subsequent PUs. Since the smallest PU size is 4×4, 256 prediction modes are stored

in a 64×64 CTU for MPM generation. Its circuit implementation may be an on-chip memory or

register array with 256 contents. In this work, an efficient storage scheme is proposed to largely

reduce memory/register array size for prediction modes.

Fig. 4.3 illustrates two examples of referred prediction modes for MPM generation.

Instead of 4 and 16 prediction modes, 3 and 7 prediction modes are involved for MPM

generation of successive PUs in 8×8 and 16×16 regions, respectively. Similarly, storing 15 and

31 prediction modes are sufficient for MPM generation of 32×32 and 64×64 regions,

respectively. In addition, since prediction modes from the top CTU are not used in MPM

www.manaraa.com

67

generation, 16 prediction modes from the left CTU need be stored. Based on the above

observations, a proposed neighboring PU mode (NPM) buffer can efficiently store these

prediction modes. By considering all prediction modes from different PU sizes, it requires 72

registers for MPM generation. This number is 77% less than the normal approach, where all

prediction modes of 4×4 blocks in a CTU are stored and hence it needs 256+16 registers for

MPM generation. Once the upper and left prediction modes are derived, three MPMs for a

current PU can be determined according to the H.265/HEVC standard. The proposed MPM

generator provides three MPMs for each PU and sends them to corresponding PEs in Fig. 4.1.

4×4

4×4

16×16

16×16

8×8

Fig. 4.3. Referred prediction modes for MPM generation with respect to (left) 8×8 region and

(right) 16×16 region.

3) Coding Unit Mode Decision: As an indispensable process in H.265/HEVC intra

prediction, RDO tries to make the finest balance between compression ratio and video quality.

Based on estimated bit rate and distortion, the Lagrangian function is employed as the criteria to

find the best prediction mode for each PU. CUs are repeatedly divided into four sub-CUs to

search the best partition. The high computational complexity and long processing time prevent

full RDO implementation. Therefore, we propose a simplified and hardware-friendly RDO

scheme. The RDO scheme consists of two parts: one part is for PU mode selection and the other

is for CU size optimization. The RDO scheme for PU mode selection will be elaborated in

www.manaraa.com

68

section 4.3.2. Here, we focus on the description of CU mode decision (CUMD) in the partition

optimization process.

Fig. 4.4 depicts the CUMD process that relies on the RD cost calculated from four PEs.

For an 8×8 CU, the corresponding PU partition could be an 8×8 PU or four 4×4 PUs. Hence, the

RD costs of four 4×4 PUs and an 8×8 PU are compared. Then, the output flag “part_size”

indicates the 8×8 CU mode decision result. Meanwhile, this 8×8 RD cost, which is the smaller

one from the RD cost of four 4×4 PUs and the RD cost of an 8×8 PU, will be used to compare

with the RD cost of a 16×16 PU. Likewise, the RD cost of remaining three 8×8 CUs in this

16×16 pixel region can be deduced. The total RD cost of four 8×8 CUs is compared with the RD

cost of 16×16 CU. Then, an output flag “split_16×16” is generated for a 16×16 CU. Similarly,

two output signals “split_32×32” and “split_64×64” are generated in the CUMD with respect to

32×32 and 64×64 CUs. These output flags indicate the partition of this CTU.

8×8 CU

8×8

RD cost
>

RD cost

RD cost

16×16

PU

16×16 CU

Cost

ACC

32×32 CU

RD cost

>

RD cost

Cost

ACC

16×16

RD cost
>

32×32

RD cost Cost

ACC
>

split_16×16 split_32×32 split_64×64

64×64 CU

4×4 PUs
RD cost

part_size

> RD cost comparator
Cost

ACC

RD cost accumulator

for sub blocks

32×32

PU

8×8

PU

64×64

PU

Fig. 4.4. CU mode decision in partition optimization through RD cost comparison

CU mode decision also affects reference pixel selection for the current block and

prediction modes update in the NPM buffer for MPM generation. For example, if the output flag

“part_size” is 1, 4×4 PUs are chosen for reference pixel selection. Thus, the reference pixels for

the successive PUs are derived from 4×4 PUs instead of an 8×8 PU. In addition, prediction

www.manaraa.com

69

modes of 4×4 PUs are stored for MPM generation of successive PUs. Reference pixels and

prediction modes for 16×16, 32×32, and 64×64 CUs are determined based on the output flags

“split_16×16”, “split_32×32”, and “split_64×64”, respectively.

4) CABAC Bit Stream Generation: Due to its superior coding efficiency, context-adaptive

binary arithmetic coding (CABAC) is the only adopted entropy coding algorithm in

H.265/HEVC standard. It encodes binary symbols that are derived from quantized coefficients

and prediction information. As shown in Fig. 4.1, under the control of the

CABAC_Coeff_Load_Ctrl module, quantized coefficients from the Coeff_MEM module along

with prediction header information are loaded into the Coeff&Header_MEM module. In order to

realize pipelined operations between intra prediction and CABAC encoder, the

Coeff&Header_MEM module is designed with the capacity of storing data of two 64×64 CTUs.

Therefore, the memory size of Coeff&Header_MEM is 31 KB.

RBSP(VPS/SPS/PPS/SH)

Binarizer
Entropy Controller

Coeff&Header

Loader

Syntax

Generator

Syntax

Binarizer

Models
Range Update

Bitstream_Gen

Ctx_idx

bin

Model

State_LUT

rLPS_LUT

Low Update

Byte_out

Update_model

Arithmetic Coding

rLPS

MPS

Bit stream

Context ModelingSyntax
Generation

Coeff&Header Data

Fig. 4.5. Hardware architecture of CABAC entropy encoder

Fig. 4.5 plots the hardware architecture of proposed CABAC entropy encoder, which

consists of four main functional blocks (i.e., Syntax Generation, Context Modeling, Arithmetic

Coding, and Raw Byte Sequence Payload (RBSP) binarizer). Activated by the entropy controller,

the Syntax Generation block reads quantized coefficients and header information of a specific

www.manaraa.com

70

CU. Then, based on quantized coefficients and header information, syntax elements are

generated and sent to the Syntax Binarizer.

Syntax Binarizer conducts binarization for each syntax element and produces binary

symbols (i.e., bin). In a CABAC entropy encoder, there are two types of bins involved: regular

coded bin and bypass coded bin. The former is coded based on context modeling and binary

arithmetic coding, while the latter does not rely on context modeling. For a regular coded bin, the

corresponding context model is read using a signal “Ctx_idx”. The new context model

“Update_model” for this regular coded bin is generated from the state transition table (i.e.,

State_LUT) and bin value. “Update_model” will replace the context model contents in the

Models module. The Arithmetic Coding block involves three steps, including range update, low

update, and byte packing. In the Context Modeling block, a variable “rLPS” is determined by bin

value, context model and range value. The new range value and low value are computed using

current bin value, current “rLPS” value and the most probable symbol. According to the low

value and its updating status, a byte is generated in the “Byte_out” process. The RBSP Binarizer

module contains basic coding parameter sets, including video parameter set (VPS), sequence

parameter set (SPS), picture parameter set (PPS), and slice header (SH). These parameter sets are

processed in this module to generate the byte sequence that conforms to HEVC standard. The

Bitstream_Gen block combines the byte sequence from the Arithmetic Coding block and RBSP

from the RBSP Binarizer to output a final bit stream. The proposed CABAC encoder runs at a

maximum frequency of 720 MHz and shows a throughput of 850 Mbins per second.

4.3.2 Design Details of PE Modules

PE modules are described and discussed in this section. PE0-PE3 are dedicated to 4×4,

8×8, 16×16, and 32×32 PUs/TUs, respectively. As a 64×64 PU prediction is based on 32×32

www.manaraa.com

71

PUs/TUs, 64×64 PUs are embedded into PE3 to save hardware resources. When reference pixels

are ready in the CTU_Ref_MEM module, the process of intra prediction starts. Each PE performs

a series of computations such as intra prediction, transformation, quantization, inverse

quantization, inverse transformation, reconstruction, CABAC rate estimation, distortion

estimation, and simplified block mode decision. Original pixels and prediction pixels are stored

in on-chip memories for reconstruction and distortion calculation. Residuals of prediction block

are used for transformations. A transpose buffer stores coefficients after each horizontal

transformation. Coefficients after each vertical transformation are used for quantization.

Quantization coefficients are stored for rate estimation and entropy coding. Residuals from

inverse transformation are used for frame reconstruction and distortion calculation.

1) Intra Prediction: Efficient hardware architectures are required to implement the

proposed algorithm adaptations in PU mode preselection. As the PU chroma mode preselection

only involves four regular modes, its hardware architecture is straightforward. Therefore, we

focus on hardware architecture explorations for PU luma mode preselection, which involves

complex choices in both intra prediction and RDO process.

Table 4.3 Luma prediction and RDO modes in the proposed design.

PU size Prediction Modes RDO Candidate Modes

64×64 1 MPM 1 MPM

32×32 35 3 MPM + 1 Hadamard

16×16 35 3 MPM + 1 Regular + 1 Hadamard

8×8 35 3 MPM + 1 Regular + 1 Hadamard

4×4 3 MPMs + 4 Regular + 12 Angular 3 MPM + 4 {Regular + Hadamard}

As shown in Table 4.3, PU luma prediction modes and RDO candidate modes consist of

MPMs, regular modes, and Hadamard modes. In order to balance the overall throughput of all

PEs, these mode choices are different from each PU size. For example, only one MPM is

www.manaraa.com

72

selected for 64×64 PUs, while three MPMs are selected for other PU sizes. For 8×8 and 16×16

PUs, one regular mode from DC, Planar, Vertical, and Horizontal modes is adopted as RDO

candidate modes. For 4×4 PUs, the number of angular modes for RDO process is determined by

the number of common mode between MPMs and regular modes. In case of only one common

mode, the angular mode with the smallest Hadamard cost is adopted as RDO candidate mode,

and the other two angular modes are discarded. For 8×8~32×32 PUs, in addition to MPMs and

regular modes, one Hadamard mode with the smallest Hadamard cost is selected from 35

prediction modes as an RDO candidate mode.

MPMs+

Regular

Ang

A

Ang

B

Ang

C

Hada

Cost

Hada

Cost

Hada

Cost

4×4

Ref

4×4

Orig

CU

Ref

CU

Orig

Ref

Filter

MPMs+

Regular

Hadamard

Modes

Residuals

& Predicted

Values

Hada

Cost

PRED_MEM

M
U

X

Best

Hada

Best

Ang

M
U

X

4×4 Luma Mode Prediction

8×8/16×16/32×32 Luma Mode Prediction

Residuals

& Predicted

Values

Fig. 4.6. Intra prediction architecture: (a) for 4×4 PUs, (b) for other size PUs.

Fig. 4.6 depicts the proposed intra prediction architectures for all PU blocks. For 4×4

blocks, selected MPMs and regular modes are processed immediately when intra prediction

starts. Yet, three angular modes are determined by the Hadamard cost. In Fig. 4.6(a), to

accelerate the derivation of the best angular modes for 4×4 PUs, three dedicated angular

www.manaraa.com

73

prediction modules are implemented. Then, through Hadamard cost comparison, one angular

mode with minimum Hadamard cost is selected as the best angular mode. In order to improve

throughput, prediction of each angular mode takes one clock cycle for 4×4 PUs. Fig. 4.6(b)

shows the intra prediction architecture of other PU blocks. A reference filter is included for

reference smoothing, and its operation varies with prediction modes and block sizes. Once the

best Hadamard mode is determined, the corresponding prediction results are stored in the

PRED_MEM memory for the subsequent RDO process. After MPMs and regular modes are

evaluated, the prediction result of the best angular mode is provided for transformation. From

8×8 ~ 32×32 blocks, each prediction block is predicted on a row-by-row basis. Therefore, 8, 16,

and 32 clock cycles are required to predict each mode in 8×8, 16×16, and 32×32 blocks,

respectively.

1D

Horizontal

DST4×4

Resi

Row

Resi

M
U

X

Unified

1D DCT

TB
Column Resi

src_sel

M
U

X

Trans_sel

1D

Vertical

DST M
U

X

Trans_sel

Row

Resi
TB

4×4 TU

8×8 TU

16×16 TU and 32×32 TU

1D

Vertical

DCT

1D

Vertical

DCT

1D

Horizontal

DCT

1D

Horizontal

DCT

Bit Width

Truncation

Fig. 4.7. Transform Architecture for 4×4, 8×8, 16×16, and 32×32 TUs.

2) Transform Coding and Quantization: DST is only used for luma 4×4 TUs, while DCT

is adopted for the remaining TUs. As DCT and IDCT are closely associated with computational

complexity in an H.265/HEVC hardware implementation [27], it is necessary to investigate high-

www.manaraa.com

74

throughput and area-efficient hardware architectures for DCT/IDCT implementation.

Fig. 4.7 shows the proposed transform architectures for all TUs. In order to improve

throughput, two-stage pipelines are used for transforms of 4×4 and 8×8 TUs [47]. Note 4×4 TUs

involve both DCT and DST transforms. Based on the color component of current 4×4 TU, a

signal “Trans_sel” selects the output of 1D horizontal transform and passes it to 1D vertical

transform. For 4×4 TUs, 1D horizontal/vertical transformation takes one clock cycle. DCT

Transforms of 8×8 TUs are involved in a two-stage hardware, which includes a transpose buffer

(TB) to store intermediate coefficients. For 16×16 and 32×32 TUs, in order to reduce

computational resources, a unified 1D DCT structure is proposed. A control signal “src_sel”

selects input data source. A horizontal transformation of residuals is first performed on a row-by-

row basis. The intermediate results are stored in a TB. After the completion of a horizontal

transformation, intermediate results are inputted to the unified 1D DCT again for a vertical

transformation. Due to different input data sizes in horizontal and vertical transformations, a bit

width truncation block is added to ensure correctness of transformation. The throughput and

required number of clock cycles for each TU are summarized in Table 4.4.

Table 4.4 Throughput and required clock cycles of transformation.

TU size Throughput (pixels/cycle) Required Clock Cycles

32×32 16 64

16×16 8 32

8×8 8 8

4×4 16 1

3) Highly-Parallel Table-Based CABAC Rate Estimator: This section describes the

hardware design of table-based CABAC rate estimator. CABAC based rate estimation algorithm

leads to the best accuracy, so it is adopted in the HEVC HM-15.0 software. However, due to the

sequential data/timing dependency of syntax element coding, the throughput of hardware

www.manaraa.com

75

implementations of CABAC based rate estimation is very low. To address this low-throughput

challenge and retain the most accurate estimation, a highly-parallel architecture is proposed to

alleviate data/timing dependency in rate computation, where the involved syntax elements are

classified into five independent syntax processing groups in [26]. In order to reduce

computational complexity, the proposed CABAC rate estimator is only applied to luma blocks,

while non-zero quantized coefficients are used for rate estimation of chroma blocks. The

proposed luma rate estimator uses look-up tables to perform context modeling and updating.

Multiple rate estimate instances are implemented for high parallelism along with a global context

buffer. To keep the same rate estimation throughput for four PEs, various numbers of rate

estimate instances are used as shown in Table 4.5.

Table 4.5 Number of rate estimator instances for each PE.

PE Number of RDO Candidates Number of Rate Estimate Instances

0 7 7

1 5 2

2 5 2

3 4 for 32×32, 1 for 64×64 1 for 32×32, 1 for 64×64

To accelerate rate estimation, five independent syntax groups in a rate estimate instance

operate simultaneously. In Fig. 4.8, the coefficient processor takes input coefficients to generate

five syntax groups. Syntax groups A-D contain regular coded bins and bypass coded bins, while

group E contains only bypass coded bins. During rate estimation, as regular coded bins depend

on context models, local context buffers for syntax groups A-D are implemented inside each rate

estimate instance, and each local context buffer serves to a dedicated syntax group. At the

beginning of rate estimation, the latest global context models of a current CU are loaded into

corresponding local context buffers in each rate estimate instance. This operation is called the

context model localization. Then, based on bin value and its context model of each regular coded

www.manaraa.com

76

bin, a new context model is derived from the corresponding lookup table. Local context models

inside each rate estimate instance will be updated accordingly, while the global context models

still remain unchanged. In order to minimize latency related to context model loading and

updating, these local context buffers are implemented by registers instead of on-chip memories.

As the syntax group E only contains bypass coded bins, its rate estimation is approximated by

bin counter and Exp-Golomb coding that performs non-zero coefficient binarization. Finally, all

fractional rates of five syntax groups are accumulated as the total bit rate. Since each rate

estimation instance has its own local context model memory, the conflicts of context modeling

between different instances can be avoided. Once the rate estimation is complete for all

instances, RD mode and size decision is made. Based on the decision result, the updated local

context models that correspond to the best CU mode and partition among both rate estimation

instances are selected to update the global context models. In this way, our proposed procedures

of context model loading and updating prevent potential context model conflicts among multiple

rate estimator instances. The global context model buffer is synchronously updated with CABAC

rate estimators.

Global Context Model Buffer

Local Ctx

Buffer

Syntax

Groups

Lookup

Table

Context

Models

Update

ACC
ACC

ACC
ACC

∑

ExpGolomb

Coding

Bin

Counter

Input

Coeffs

Rate Estimate Instance

Coeffcient

Processor

Output

Bit Rate

Fig. 4.8. Proposed highly-parallel table-based rate estimator.

4) Simplified Block Mode Decision (SBMD): This module determines the best prediction

mode for luma and chroma blocks. Mode decision process is independent for luma and chroma

www.manaraa.com

77

blocks. For luma prediction blocks, RD cost of each prediction mode is calculated when its

corresponding distortion and rate are available. Then, a prediction mode with minimum RD cost

is selected as the best prediction mode. On the other hand, for chroma prediction blocks, the rate

is approximated using non-zero quantized coefficients. RD cost of a chroma mode is derived

when its distortion is available. This simplification greatly reduces hardware complexity and

increases throughput. Since each PU contains two chroma blocks, the distortion and rate of two

chroma blocks are added to the total RD cost. Once the best prediction mode is determined by

the SBMD module, its total RD cost is sent to the CUMD block for CU mode decision.

4.3.3 Timing Diagram of Proposed Intra Prediction

Fig. 4.9 shows the parallel processing of various PUs in four PEs and their data/timing

dependency. Once original CTU pixels and reference pixels are ready, all PEs start processing.

Since each 8×8 CU contains 4×4 and 8×8 partitions, two PEs handle 8×8 CUs. Specifically, PE0

and PE1 are responsible for 4×4 and 8×8 PUs, respectively. After PE0 and PE1 determine the best

prediction modes, the CUMD module is activated to find the best partition for this 8×8 CU. This

procedure is repeated four times to obtain the best RD cost of sub-CUs of a 16×16 CU.

Meanwhile, 16×16 PUs are processed in PE2 and its best RD cost is calculated. After completing

the mode decision of this 16×16 CU and its sub-CUs, the CUMD module is activated to

determine the optimal partition of this 16×16 block. 32×32 and 64×64 CUs are processed in a

similar manner.

www.manaraa.com

78

4PU4×4

PU8×8

PE0

PE1

PE2

PE3

PU16×16

PU32×32/PU64×64

4PU4×4

PU8×8

4PU4×4

PU8×8

4PU4×4

PU8×8

PU16×16PU16×16 PU16×16

8×8 CU

Mode Decision

16×16 CU

Mode Decision

4PU4×4

PU8×8

4PU4×4

PU8×8

4PU4×4

PU8×8

4PU4×4

PU8×8

4PU4×4

PU8×8

4PU4×4

PU8×8

4PU4×4

PU8×8

4PU4×4

PU8×8

4PU4×4

PU8×8

4PU4×4

PU8×8

4PU4×4

PU8×8

4PU4×4

PU8×8

32×32 CU

 Mode Decision

4PU4×4

PU8×8

PU16×16

PU32×32/PU64×64

64×64 CU

Mode Decision

Fig. 4.9. Parallel processing of various PUs in four PEs and their data/timing dependency.

Fig. 4.10 plots the timing diagrams of 4×4 PUs in PE0 and 8×8 PUs in PE1. This figure

includes both luma and chroma blocks. For an 8×8 PU, five luma prediction (i.e., three MPMs,

one regular mode, and one angular mode) are processed one by one in PE1. It takes 8 clock

cycles to process a luma prediction mode. Because intra prediction is performed on a row-by-

row basis, horizontal transform coding (T_1D) is performed one clock cycle after intra

prediction. It takes 8 clock cycles for vertical transform coding (T_2D), which starts one clock

cycle after the completion of T_1D. Quantization (Quant) begins after T_2D and it is followed

by inverse quantization (iQuant). Once all the transform coefficients are quantized, CABAC

based rate estimation begins immediately. To increase rate estimation throughput of 8×8 PU

intra prediction, 2 rate estimate instances are implemented for PE1. For each luma mode, it takes

32 clock cycles in PE1 to complete computation from mode prediction to distortion calculation.

Due to a fine pipelined design, the total number of clock cycles for processing five luma

prediction modes is 68. It represents an average of 14 clock cycles per mode. The throughput of

each pipeline stage is 8 pixels/cycle in PE1. After completing 5 luma mode prediction for an 8×8

CU, intra prediction for one chroma mode of 16×16 CU starts in PE1. Note the chroma block size

is 8×8 in 16×16 CUs. Chroma mode processing of 16×16 CUs is treated as 8×8 sub-CUs in luma

mode processing. Chroma mode processing of 8×8 CUs is scheduled after 4×4 PUs in PE0.

www.manaraa.com

79

R1Pred

T_1D

Quant

iQuant

iT_1D

Recon

Dist

8

R1-HT

R1-VT

R2

11

R2-HT

R2-VT

R3

R3-HT

R3-VT

R4

R4-HT

R4-VT

R1-Rec R2-Rec R3-Rec R4-Rec

R1-Dist R2-Dist R3-Dist R4-Dist

12

13

23

24

19

U0 V0

RE

U0-HT

U0-VT

V0-HT

V0-VT

U0-Rec

U0-Dist

V0-Rec

V0-Dist

Pred

T_1D

Quant

iQuant

iT_1D

Recon

Dist

Rate

Estimation

T_2D

iT_2D

RE_M0

0 1 2 3 4 5 6

0 1 2 3 4 5 6

0 1 2 3 4 5 6

0 1 2 3 4 5 6

0 1 2 3 4 5 6

0 1 2 3 4 5 6

0 1 2 3 4 5 6

0 1 2 3 4 5 6

0 1 2 3 4 5 6

0 1 2 3 4 5 6

0 1 2 3 4 5 6

0 1 2 3 4 5 6

0 1 2 3 4 5 6

0 1 2 3 4 5 6

0 1 2 3 4 5 6

0 1 2 3 4 5 6

0 1 2 3 4 5 6

0 1 2 3 4 5 6

0 1 2 3 4 5 6

0 1 2 3 4 5 6

0 1 2 3 4 5 6

0 1 2 3 4 5 6

0 1 2 3 4 5 6

0 1 2 3 4 5 6

0 1 2 3 4 5 6

0 1 2 3 4 5 6

0 1 2 3 4 5 6

0 1 2 3 4 5 6

0 1 2 3 4 5 6

0 1 2 3 4 5 6

0 1 2 3 4 5 6

0 1 2 3 4 5 6

0 1 2 3 4 5 6

0 1 2 3 4 5 6

0 1 2 3 4 5 6

0 1 2 3 4 5 6

A B

A B

A B

A B

A B

A B

A B

A B

A B

C D

C D

C D

C D

C D

C D

C D

C D

C D

E F

E F

E F

E F

E F

E F

E F

E F

E F

G H

G H

G H

G H

G H

G H

G H

G H

G H

IDLE

IDLE

IDLE

IDLE

IDLE

IDLE

IDLE

0 6

7 Luma

Prediction

Modes

A C E G

Chroma U

modes

{0, 1, 10, 26}

B D F H

Chroma V

modes

{0, 1, 10, 26}

4×4 PU Timing Diagram

Sub PUs 4×4 Intra Prediction

Block

4×4_0

Block

4×4_1

Block

4×4_2

Block

4×4_3

IDLE 4×4 Intra Prediction

8×8 PU Timing Diagram

Rx
Luma

Modes
U/V0

Chroma

Mode 0
U/V1

Chroma

Mode 1

HT Horizontal

1D-DCT
VT Vertical

1D-DCT
iHT Inverse Horizontal

1D-DCT
iVT Inverse Vertical

1D-DCT

1 Clock Cycle

Blk8×8_0 Rate_estimation

T_2D

R1-Q R2-Q R3-Q R4-Q U0-Q V0-Q

R1-iQ R2-iQ R3-iQ R4-iQ U0-iQ V0-iQ

R1-iHT

R1-iVT

R2-iHT

R2-iVT

R3-iHT

R3-iVT

R4-iHT

R4-iVT

U0-iHT

U0-iVT

V0-iHT

V0-iVTiT_2D

10

R1

R1-HT

R1-VT

R2

R2-HT

R2-VT

R3

R3-HT

R3-VT

R4

R4-HT

R4-VT

R1-Rec R2-Rec R3-Rec R4-Rec

R1-Dist R2-Dist R3-Dist R4-Dist

R5 U1

R5-HT

R5-VT

U1-HT

U1-VT

R5-Rec

R5-Dist

U1-Rec

U1-Dist

R1-Q R2-Q R3-Q R4-Q R5-Q U1-Q

R1-iQ R2-iQ R3-iQ R4-iQ R5-iQ U1-iQ

R1-iHT

R1-iVT

R2-iHT

R2-iVT

R3-iHT

R3-iVT

R4-iHT

R4-iVT

R5-iHT

R5-iVT

U1-iHT

U1-iVT

IDLE

IDLE

IDLE Blk8×8_1 Rate_estimation

22

R5

R5-HT

R5-VT

R5-Rec

R5-Dist

R5-Q

R5-iQ

R5-iHT

R5-iVT

IDLE

V1

V1-HT

V1-VT

V1-Q

V1-iQ

V1-iHT

V1-iVT

V1-Rec

V1-Dist

RE_M6

RE_M0

RE_M6

RE_M0

RE_M6

RE_M0

RE_M6

RE Rate Estimation

8 8

19 (when QP=30)
76 (when QP=30)

4

10

55

80 (when QP=30)

68

15

Fig. 4.10. Timing diagrams of 4×4 PUs in PE0 and 8×8 PUs in PE1.

www.manaraa.com

80

Intra prediction of 4×4 PUs in PE0 is similar to that of 8×8 PUs in PE1. Four 4×4 PUs are

contained in an 8×8 CU, each PU goes through an RDO process to evaluate 7 preselected luma

prediction modes. Three MPMs are processed first, followed by the other four selected modes

described in the previous section. As plotted in Fig. 10, it takes 1 clock cycle to process a luma

mode prediction for 4×4 PUs. Thus, a pipelined hardware can achieve a throughput of 16 pixels

per clock cycle. In Fig. 4.10, symbols (0-6) stand for seven luma modes of 4×4 PUs, while

symbols (A, C, E, and G) and symbols (B, D, F, and H) represent mode 0 (Planar mode), mode 1

(DC), mode 10 (Horizontal), and mode 26 (Vertical) for chroma U and V, respectively. For 4×4

PUs, it requires 15 clock cycles from prediction to distortion calculation of 7 luma modes. In

order to improve the rate estimation throughput of 4×4 PUs, 7 rate estimate instances are

implemented in PE0, so each instance deals with one prediction mode. Rate estimation starts

immediately when quantized coefficients of each prediction mode are ready. RD cost of each

mode is calculated based on distortion and rate. The smallest RD cost is selected in the luma

mode decision.

Next, we discuss the overall throughput of 4×4 and 8×8 PUs. As the time required for

CABAC based rate estimator depends on QP, we assume QP is 30 in the following analysis.

When QP is set to 30, our experimental studies show it takes an average of 9 and 25 clock cycles

for rate estimation of a 4×4 and 8×8 PU, respectively. For 4×4 PUs, as quantization of the 7th

prediction mode is done after the 10th clock cycle, 19 clock cycles are enough to complete the

computation from prediction to rate estimation. Thus, the total number of clock cycles for four

4×4 PUs is 76, which indicates that the RD cost of sub-PUs of an 8×8 CU is derived within 76

clock cycles. For 8×8 PUs, since quantization of the 5th luma mode is done after the 55th clock

cycle, 80 clock cycles are enough to complete the computation from prediction to rate

www.manaraa.com

81

estimation. This number is close to 76 of four 4×4 PUs. When RD costs of both 8×8 CU

partitions are available, an RD cost comparison is performed. Thus, the best CU/PU combination

and prediction mode are determined.

The nature of CABAC algorithm is context-based entropy coding, so its processing time

for rate estimation is not fixed. The maximal and minimal numbers of clock cycles in CABAC

rate estimation heavily depend on the design choices (prediction mode set, quantization

parameter, parallelism level, hardware implementation architecture, etc.) and the specific video

sequences under test. In practice, due to the content variation of video sequences, some blocks

require more clock cycles to process, while other blocks require fewer clock cycles. These blocks

requiring fewer cycles compensate delays introduced by complex blocks. If there are many

blocks requiring more clock cycles, the average throughput is degraded, so the intra encoder can

only support a lower frame rate or a less resolution of video encoding applications.

4.4 EXPERIMENTAL IMPLEMENTATION AND RESULTS

The proposed algorithm adaptations have been implemented in a modified HM-15.0

software. Table 4.6 provides the algorithm-level coding performance comparison between

existing designs and this work. All the results in Table 4.6 are obtained with the disabled RQT.

The reference [28] supports a maximum resolution of 1080P, if we compare the coding

performance in only 1080P sequences (i.e., class B), the reference [28] provides an average

increase of 4.62% in BD-Rate, while our work provides an average increase of 3.01% in BD-

Rate. The design [29] and this work provide complete results for classes A-E and 4K video

sequences except for Beauty. The BD-Rate increase in the reference [29] is 5.94%, while it is

4.36% in this work.

The proposed fully-parallel hardware architecture of H.265/HEVC intra encoder has been

www.manaraa.com

82

implemented in Verilog and synthesized by field-programmable gate array (FPGA) and

application-specific integrated circuit (ASIC) technology. The FPGA implementation is based on

Altera Stratix V GX, and the ASIC implementation uses TSMC 90nm technology. The

maximum operating clock frequencies for FPGA and ASIC implementations are 120MHz and

320MHz, respectively.

Table 4.6 Comparison of experimental results of intra encoding algorithms.

 Zhu [28] Pastuszak [29] This work

Class Sequences
BD_Rate

[%]

BD_PSNR

[dB]

BD_Rate

[%]

BD_PSNR

[dB]

BD_Rate

[%]

BD_PSNR

[dB]

A People On Street 4.61 -0.21 5.18 -0.25 3.31 -0.17

A Traffic 4.34 -0.21 4.73 -0.22 4.49 -0.22

B Park Scene 3.39 -0.11 3.97 -0.15 2.04 -0.09

B Kimono 4.39 -0.12 3.42 -0.11 2.92 -0.09

B Basketball Drive 6.73 -0.17 7.39 -0.20 4.33 -0.13

B BQ Terrace 4.32 -0.19 4.99 -0.20 1.95 -0.09

B Cactus 4.28 -0.14 5.70 -0.18 3.87 -0.14

Average B (1080P HD) 4.62 -0.15 5.09 -0.17 3.02 -0.11

C Basketball Drill 4.63 -0.21 8.91 -0.39 12.12 -0.59

C BQ Mall 4.15 -0.20 6.23 -0.30 3.30 -0.17

C Party Scene N/A N/A 5.39 -0.34 2.76 -0.21

C Race Horses 3.38 -0.19 5.74 -0.29 4.97 -0.29

D Basketball Pass 4.80 -0.24 7.28 -0.39 6.02 -0.37

D Blowing Bubbles 3.44 -0.19 5.91 -0.35 3.63 -0.27

D BQ Square 1.97 -0.15 6.41 -0.42 2.37 -0.18

D Race Horses N/A N/A 6.78 -0.36 6.12 -0.40

E Kristen And Sara 5.86 -0.24 7.88 -0.36 6.28 -0.26

E Four People N/A N/A 5.79 -0.29 3.33 -0.16

E Johnny 5.15 -0.21 8.03 -0.30 5.31 -0.19

F Slide Editing N/A N/A N/A N/A 2.48 -0.36

F Slide Show N/A N/A N/A N/A 6.72 -0.59

F China Speed N/A N/A N/A N/A 4.12 -0.37

4K Beauty N/A N/A N/A N/A 5.06 -0.08

4K Bosphorus N/A N/A 6.03 -0.16 6.19 -0.16

4K Honey Bee N/A N/A 5.35 -0.08 2.31 -0.04

4K Jockey N/A N/A 7.31 -0.10 4.54 -0.08

4K Ready Steady Go N/A N/A 5.37 -0.16 4.84 -0.11

4K Shake & Dry N/A N/A 2.58 -0.06 1.84 -0.04

4K YachtRide N/A N/A 6.11 -0.13 5.79 -0.16

Average 4K except for Beauty N/A 5.46 -0.12 4.25 -0.10

Average 1080P HD and 4K

except for Beauty
N/A 5.29 -0.14 3.69 -0.10

Average value for A-E except

for Party Scene, Race Horses,

and Four People

4.36 -0.19 N/A 4.46 -0.22

Average for A-E and 4K

except for Beauty
N/A 5.94 -0.24 4.36 -0.19

Table 4.7 shows the memory usage for storing original pixels, prediction pixels,

www.manaraa.com

83

quantization coefficients and reconstruction pixels in each PE, as well as memory demand for

non-PE modules. Denoted as “bank×column×width”, the memory size includes both luma and

chroma components. ORIG_MEM and PRED_MEM store original pixels and prediction pixels

after intra prediction, respectively. QUANT_MEM stores quantization coefficients, which are the

output of intra prediction. REC_MEM stores reconstructed pixels that are reference pixels for

future blocks. In order to reduce the data access delay in PE0, all computational results are stored

in registers to improve the throughput, so no memory blocks are included in PE0. The total

memory in all four PEs is 563 Kbits (i.e., 69 KB). As introduced in section 4.3.1, memory blocks

(CTU_Orig_MEM, CTU_Ref_MEM, Coeff&Header_MEM) serve all PEs in this hardware

architecture. The sizes of these memories are 12 KB, 7.6 KB, and 31 KB, respectively.

Therefore, the required total amount of memory resources is 120 KB for the entire H.265/HEVC

intra encoder as well as the external original and reference pixel memories.

Table 4.7 Memory usage in the proposed intra encoder (unit: bit).

 ORIG_MEM PRED_MEM QUANT_MEM REC_MEM Total(PE)

PE0 Register Register Register Register None

PE1 2×24×32 2×40×32 2×104×64 1×104×64 24,064

PE2 4×48×32 4×80×32 4×720×64 2×720×64 292,864

PE3 8×32×32 8×160×32 8×256×64 4×256×64 245,760

Total (PE) 15,872 53,760 328,704 164,352 562,688

Non-PE Coeff&Header_MEM 256,960

Total 819,648

The processing time of our proposed CABAC based rate estimator depends on QP values

and PU sizes. Table 4.8 lists the required average, maximum, and minimum numbers of clock

cycles for rate estimation with different PU sizes and QP values. A smaller QP leads to better

video quality after compression, but the resultant rate estimation throughput is lower due to more

www.manaraa.com

84

quantization coefficients are involved in binarization and context-adaptive probability modeling.

For each PU size with four QP options (22, 27, 32, and 37), the maximum number of clock

cycles is obtained from the worst cases, which correspond to the largest number of non-zero

quantization coefficients for CABAC rate estimation, and the minimum number of clock cycles

represents the best cases, which correspond to zero or very few non-zero quantization

coefficients for CABAC rate estimation. Since the PUs requiring fewer clock cycles compensate

delays introduced by PUs requiring more clock cycles, so the average number of clock cycles

determines the overall rate estimation throughput. The average numbers in Table 4.8 are

sufficient to meet the system throughput requirements (i.e., 1080P @ 45fps in FPGA, and 4K @

30fps in 90nm ASIC) in this work.

Table 4.8 Average, maximum, and minimum clock cycles of rate estimator vs. QP value and PU

size.

QP\PU 4×4 8×8 16×16 32×32 64×64

22 11.7 44.7 160.6 608.3 2421.3

27 9.8 27.8 99.2 391.0 1563.6

32 8.7 22.5 61.6 235.4 944.5

37 8.0 18.1 40.3 145.6 587.1

Max for above QPs 22 99 340 1292 5112

Min for above QPs 7 8 6 6 25

Table 4.9 Average number of clock cycles and throughput of intra prediction vs. QP value and

PU size.

QP\PU
4×4 8×8 16×16 32×32

CLK THP CLK THP CLK THP CLK THP

22 21.7 0.7 99.7 0.6 326.6 0.8 938.3 1.1

27 19.8 0.8 82.8 0.8 265.2 1.0 720.9 1.4

32 18.7 0.9 77.5 0.8 227.6 1.1 565.4 1.8

37 18.0 0.9 73.1 0.9 206.3 1.2 475.6 2.2

Table 4.9 shows the required average number of clock cycles and throughput (i.e., THP)

for intra prediction with different PU sizes and QP values. Since a 64×64 PU is split into four

32×32 PUs for prediction, a 64×64 PU is regarded as four 32×32 PUs in the throughput

www.manaraa.com

85

evaluation. In Table IX, intra prediction of 8×8 PUs has the lowest throughput for all QP values.

For example, the lowest throughput is 0.6 for a QP value of 22. Hence, intra prediction of 8×8

PUs is the throughput bottleneck of proposed highly-parallel hardware architecture. For a 64×64

CTU, the required number of clock cycles is calculated by 4096/THP. Assume the QP is 27, the

minimum throughput 0.8 is obtained from the Table 4.9. Thus, 5120 clock cycles are required for

intra prediction of a 64×64 CTU. Considering the reported clock frequency at our FPGA design

(i.e., 120MHz), this proposed architecture supports up to 1080P @ 45 fps. Since our ASIC

implementation in TSMC 90nm technology supports 320MHz clock frequency, the throughput

of this architecture can sustain up to 4K@ 30 fps.

Table 4.10 Resource comparison of proposed design implemented by FPGA and TSMC 90nm

technology.

Module
Stratix V GX (# of ALUT + # of DSP) TSMC 90nm (K gate)

PE0 PE1 PE2 PE3 PE0 PE1 PE2 PE3

Intra Prediction 7019 + 64
12840 +

64

19795 +

82

25717 +

106
68.2 103.0 129.4 183.0

Trans 2568 + 56 1443+ 24
3133 +

50

10611 +

224
51.4 32.5 72.5 269.9

Quant 1129 + 16 583 + 8
1321 +

16
2497+ 32 28.4 14.4 29.1 61.1

iQuant 368 + 16 184+ 8 368 + 16 704 + 32 27.4 13.6 27.1 54.2

iTrans 3820 + 56 1781 + 24
3526 +

52

12068 +

222
52.4 30.1 67.3 258.2

Reconstruction 439 217 673 744 10.4 0.8 1.6 3.2

Distortion Calculation 401 + 12 197 + 6 410 + 12 817 + 24 8.8 4.6 9.2 18.2

Rate Est & SBMD 12620 8107 + 5 5667 + 6 7970 + 7 93.9 55.3 63.2 61.4

Ref_Gen 5612 6272 5692 2612 16.2 12.9 11.6 18.7

Block_Ref_Buffer 2897 27.6

MPM_Gen 639 5.3

Orig_Pixel_Loader 15425 160.1

Main Ctrl Logic 291 0.6

CABAC_Coeff_Load_Ctr 2383 27.9

CABAC Entropy Encoder 5155 + 2 26.6

Total 201823 + 1253 2288

www.manaraa.com

86

Table 4.11 Comparison of FPGA implementations of H.265/HEVC intra encoders.

Architecture Pastuszak [29] Miyazawa [44] Atapattu [45] This work

FPGA Arria II GX N/A Zyng ZC 706 Stratix V GX

Frequency (MHz) 100 / 200 N/A 140 120

Resolution 1080 P @ 60 1080 P @ 60 1080 P @ 30 1080 P @ 45

Support PU size No 64×64 PU N/A N/A All

Mode decision
RDO with bin

counting
SAD Early termination

RDO with highly-parallel

table-based CABAC

RDO intra candidates
4-20 for each

CU/PU/TU
N/A 35 1-7 for each CU/PU/TU

Intra quality losses 0.17dB 0.6 dB N/A 0.11dB

BD-Rate increase 5.09% N/A 13% 3.02%

Gate count
93K ALUTs + 481

DSPs
N/A 84K LUTs + 34 DSPs

201K ALUTs + 1253

DSPs

Memory (KB) 52 N/A 28 120

Table 4.10 reports resource utilization in the FPGA and ASIC implementations, including

resource consumption details for four PEs and non-PE modules. Most of the logic resources are

consumed by intra prediction, transform, quantization, inverse quantization, inverse transform,

and rate estimation. Since the fully-parallel feature and inclusion of all PU and TU sizes,

relatively more logic elements are utilized. The logic resources of transform, quantization,

inverse quantization, and inverse transform heavily depend on computational throughput. In our

architecture, the throughput of PE1 and PE3 are the slowest and highest, respectively. Hence,

PE1 and PE3 consume the smallest and largest logic elements. Table 4.11 summarizes the

performance comparison of existing FPGA implementations of H.265/HEVC intra encoders. The

proposed design runs at 120MHz, supports all PU sizes, involves a smaller number of RDO intra

candidates, and performs video encoding of 1080P @ 45 fps. In terms of video compression

performance, the proposed FPGA implementation exhibits the minimum quality loss and BD-

rate increase.

www.manaraa.com

87

Table 4.12 Comparison of H.265/HEVC intra encoder hardware implementations.

Architecture Zhu [28] Tsai [32] Huang [33] Pastuszak [29] This work

Function Intra Encoder
Intra & Inter

Encoder
Intra Encoder Intra Encoder Intra Encoder

Technology TSMC 90nm TSMC 28nm SMIC 55nm TSMC 90nm TSMC 90nm

Frequency [MHz] 357 312 294 200/400 320

Supported PU Size No 64×64 PU
No 4×4, 8×8

PUs
No 64×64 PU No 64×64 PU All

Supported TU Size All No 4×4 TU No 32×32 All All

RDO candidates [4, 4, 4, 4] N/A [8, 4, 4, 2] [12, 10, 4, 3] [7, 5, 5, 4, 1]

Rate Estimator
Prediction Error Based

Approximation
Table-based

CFBAC
Table-based

CABAC
Bin Counting

Highly-parallel

Table-based CABAC

CABAC Entropy

Encoder
Not included Included Not included Included Included

Resolution 1080P @ 44fps 8K @ 30fps 1080P @ 60fps 4K @ 30fps 4K @ 30fps

Quality Losses [BD-

PSNR]
0.15dB (for 1080P) 0.8dB (for 8K) N/A

0.17dB (for 1080P)

0.11dB (for 4K)
0.11dB (for 1080P)

0.10dB (for 4K)

Rate Increase [BD-
Rate]

4.62% (for 1080P) 17% (for 8K)
5.86% (for

1080P)
5.09% for (1080P)

5.46% (for 4K)
3.02% (for 1080P)

4.37% (for 4K)

Gate Count 2269 K 8250 K 1572 K 1086 K 2288 K

Memory N/A 7.14 MB N/A 52 KB 120 KB

Power [mW] 217.9 708 194 273 236

Table 4.11 summarizes the performance comparison of the proposed H.265/HEVC intra

encoder with existing state-of-the-art designs in the literature [28, 29, 32, and 33]. The proposed

design is the only work that supports all PU and TU sizes, while the designs in [28, 29, 33] do

not support 64×64 PUs that is highly desirable in ultra-high-definition 4K/8K videos, due to their

excellent compression performance in smooth-textured videos. The design in [32] does not

support 4×4 TUs, 4×4 and 8×8 PUs, yet, which are absolutely necessary to encode sharper and

detail-rich videos. Regarding bit rate estimation performance, compared with the fast and

simplified algorithms [28, 29], CABAC-based rate estimation provides the best accuracy with an

overhead of more hardware cost. Our proposed highly-parallel CABAC rate estimator

significantly increases the rate estimation throughput. The designs in [28, 32] are incomplete

intra encoders, because CABAC entropy encoder is not included in their architectures. The

alleviated data/timing dependency in our proposed fully-parallel architecture enables real-time

video encoding up to 4K @ 30 fps. Thanks to the proposed hardware-oriented algorithm

www.manaraa.com

88

adaptations in Section II, the rate increases (BD-Rate) in this work are 3.02% and 4.37% for

1080P and 4K video sequences, respectively. This BD-Rate is lower than the existing designs in

[28, 32, and 33] with the same video resolution (1080P or 4K). The quality loss (BD-PSNR) in

this work are 0.11dB and 0.10dB for 1080P and 4K video sequences, respectively. These results

indicate the best coding efficiency over all existing designs in the literature. In this work,

referring to the smallest two-input NAND gate, the total gate count is 2288K gate. The required

memory size is 120KB, and the power consumption is 236 mW. These hardware cost, memory

usage, and power consumption are comparable with the existing designs in Table 4.12.

In this work, in order to mitigate computational complexity, instead of using CABAC

based rate estimation, chroma rate is estimated based on the number of non-zero coefficients

after quantization stage. In future works, if CABAC based rate estimation is also adopted for

chroma blocks, the BD-Rate in Table 4.12 is expected to shrink by another 1~2%. In this work,

although four PEs are implemented to realize high parallelism, the overall throughput is still

limited by the CABAC based rate estimators. As CABAC based rate estimation does not involve

complex computations (such as multiplication), it is feasible to boost the clock frequency of this

module for higher throughput.

4.5 CONCLUSION

In order to reduce computational complexity and mitigate data/timing dependency of

H.265/HEVC intra encoding, this chapter presents efficient algorithm adaptations and a fully-

parallel intra encoder hardware architecture. The proposed algorithm adaptations include PU

chroma and luma mode preselection, modified CU mode decision, and simplified table-based

CABAC rate estimation. Compared with the HM-15.0 software, the proposed algorithm

adaptations lead to a reduction of 27% in computational workload, while the average BD-Rate

www.manaraa.com

89

and BD-PSNR are 4.39% and -0.21dB, respectively. This BD-Rate is lower than the existing

designs in literature with the same video resolution of 1080P or 4K. The proposed hardware

architecture includes four independent parallel prediction engines. In order to achieve high

accuracy, reliability, and throughput of rate estimation, multiple CABAC rate estimate instances

are implemented, where 16 syntax elements are classified into five independent groups for

parallel processing. The proposed intra encoder considers all CU/PU/TU sizes and 35 prediction

modes, and is capable of performing real-time video coding up to 30 fps of 4K using TSMC

90nm process. This fully-parallel architecture is very promising to support even higher UHD

video encoding with further modification, such as boosting the operating frequency of CABAC

rate estimate instances.

www.manaraa.com

90

CHAPTER 5

PERFORMANCE ENHANCED INTRA ENCODER

In this chapter, we propose a performance-enhanced intra encoder based on the proposed

design in chapter 4. Particularly, we propose to include the derived luma mode that has been

excluded to reduce mode dependency in our previous design, while still adopting other algorithm

adaptations. The exclusion of derived luma mode has been observed resulting in significant BD-

Rate increase for some test sequences, while the inclusion of the derived luma mode can

drastically improve the coding efficiency of the worst cases. However, the inclusion of derived

luma mode will bring mode dependency to intra prediction between chroma and luma blocks,

resulting in a throughput decrease of intra prediction. In order to mitigate its influence, we

propose several hardware strategies to improve the overall throughput of intra encoder.

Compared with HM-15.0 reference software, the proposed algorithms reduce the computation

workload by 22%, while the average BD-Rate and BD-PSNR for classes A-F and 4K are 2.79%

and -0.13dB, respectively. This BD-Rate is lower than existing designs in literature with the

same video resolution. With proper hardware modifications, the proposed intra encoder with

TSMC 90nm technology can operate at 320 MHz with a hardware gate count of 2186K and

power consumption of 290mW. Experimental results show our design supports real-time

encoding of 4K videos at 30 fps.

5.1 INTRODUCTION

The enhanced coding features of H.265/HEVC bring more efficient compression than

existing standards, however, the resultant computational complexity in RDO cannot be ignored.

The challenges of implementing H.265/HEVC intra encoders have been discussed previously. To

address these challenges, we have proposed hardware-oriented algorithms to reduce the

www.manaraa.com

91

computational complexity, meanwhile, hardware architecture has been designed to validate the

efficiency of proposed algorithms. In chapter 3, a highly-parallel table-based CABAC rate

estimator has been proposed to accelerate rate prediction for the RDO process, while retaining

excellent rate prediction accuracy. Along with other complexity reduction algorithms, we

proposed a highly efficient H.265/HEVC intra encoder, which possesses a high compression

efficiency with a 4.79% BD-Rate increase and 0.21dB BD-PSNR decrease on average in chapter

4. Hardware implementation with TSMC 90nm technology shows the proposed intra encoder is

capable of processing 4K real-time videos at 30fps.

Although the overall compression performance of the proposed intra encoder in chapter 4

is superior to the state-of-the-art designs, we notice that relatively high BD-Rate increases are

shown for some video sequences, such as Basketball Drill (12.12%), Race Horses (6.12%), and

Slide Show (6.72%) [47]. Our initial investigation reveals that a remarkable increase of BD-Rate

(i.e., Basketball Drill (9.01%), Race Horses (4.00%), and Slide Show (3.85%)) occurs when

applying the proposed PU chroma mode preselection algorithm to the proposed intra encoder in

chapter 4. This observation inspires us to further improve the compression algorithms for HEVC

intra encoders.

In this chapter, we firstly investigate the influence of the derived luma mode in chroma

prediction. Experiments are conducted to perform intra encoding with derived luma mode in

chroma prediction. Results are compared with that of proposed intra encoder in chapter 4. It

turns out that the intra encoder with derived luma mode improves 1.6% over existing algorithms

in BD-Rate on average. Particularly, in contrast to the intra encoder in chapter 4, the worst case

of BD-Rate from Basketball Drill (12.12%) shifts to Slide Show (5.71%) in this design. It is

certain that the inclusion of derived luma mode in PU chroma prediction brings back the mode

www.manaraa.com

92

dependency between luma and chroma blocks, thereby reducing the overall compression

throughput. In order to alleviate the resulting degradation in throughput, a modified hardware

architecture of intra encoder is proposed in this chapter. Even if the basic system architecture

adopts fully-parallel prediction engines (PEs), we propose new timing diagrams to properly

allocate the processing orders for prediction and RDO processes in PEs. We also propose a more

balanced prediction block schedule to mitigate the throughput degradation due to the inclusion of

derived luma mode in PU chroma prediction. Moreover, we propose to double the operation

frequency of context-adaptive binary arithmetic coding (CABAC) rate estimators to achieve an

overall encoding throughput of 4K @ 30fps. In addition, asynchronous FIFOs are proposed to

ensure correct timing when data/signals pass through two clock frequency domains. We discuss

and provide solutions for the number and depth of asynchronous FIFOs for each PE. This

hardware architecture is described in Verilog and synthesized in an FPGA and an ASIC using

TSMC 90nm technology. This ASIC implementation uses 127K on-chip memory and 2186K

logic gates, consumes 290mW, supports 320MHz clock frequency, and sustains 4K video

sequences at 30 fps. Compared to the state-of-the-art designs [28, 29, 32, 33, and 48], it provides

the best compression performance with a little overhead on memory and power consumption.

The rest of this chapter is organized as follows. The proposed high-performance

adaptation is described in section 5.2. Section 5.3 introduces the hardware architecture and

timing diagrams. System implementation results are presented and compared in section 5.4.

Finally, section 5.5 concludes the chapter.

5.2 PROPOSED HIGH-PERFORMANCE ALGORITHM ADAPTATION

In the beginning, we investigate the reason why video compression performance is

relatively higher for certain videos (e.g., Basketball Drill) when using the previously proposed

www.manaraa.com

93

algorithm. In chapter 4, the PU chroma mode preselection algorithm consists of two independent

algorithms: the derived luma mode removal, and simplified chroma rate estimation. The derived

luma mode removal aims to eliminate the mode dependency of intra prediction between a luma

block and its chroma blocks. In HEVC, chroma prediction contains four fixed modes (i.e., DC,

Planar, Vertical, and Horizontal) and one derived mode. As the derived mode is determined by

the luma RDO process, the chroma prediction cannot start before the completion of a luma RDO.

To get rid of this inherent mode dependency, the algorithm in chapter 4 removed this derived

luma mode in chroma prediction. Regarding the simplified chroma rate estimation, due to the

serial syntax processing of CABAC and the high throughput requirement of UHD video coding,

it is not necessary to implement CABAC-based rate estimation for chroma PUs. Moreover, since

humans are more sensitive to luminance than chrominance, it is reasonable to approximate the

rate estimation computation of chroma PUs by counting the non-zero quantization coefficients.

This simplified chroma rate estimation has the benefits of low complexity, high throughput,

efficient area, and low power consumption.

Table 5.1 Breakdown results of BD-Rate increase in M1 algorithm.

Derived luma

mode removal

Simplified chroma

rate estimation

PU chroma mode

preselection

Class Sequences BD-Rate [%] BD-Rate [%] BD-Rate [%]

C Basketball Drill 8.03 1.16 9.01

D Basketball Pass 3.22 1.13 4.16

D Race Horses 2.92 1.14 4.00

F Slide Show 3.05 1.96 3.85

Table 5.1 shows the breakdown BD-Rate increase caused by the PU chroma mode

preselection algorithm. It shows at least 80% of the BD-Rate increase is attributed to the derived

luma mode removal algorithm. The derived luma mode is one of five intra prediction modes for

chroma prediction, while the other four intra prediction modes are fixed modes (i.e., Planar, DC,

www.manaraa.com

94

Vertical, and Horizontal). This inherent dependence of the prediction mode between luma and

chroma PUs results in data and timing dependencies. In our previous design, this derived luma

mode is removed to eliminate data and timing dependencies. However, according to Table 5.1,

the derived luma mode plays a key role in video compression performance, especially for the

worst-case video sequences. Therefore, we propose to include the derived luma mode in the PU

chroma mode prediction algorithm.

To reduce the computational complexity and improve video compression efficiency,

especially for the worst-case videos, three algorithm adaptations are proposed in this work. First,

simplified chroma rate estimation is used in the chroma RDO process, where the chroma rate is

estimated by counting the number of non-zero quantized coefficients. All five chroma modes,

including one derived luma mode and four fixed modes are supported in this algorithm. Second,

mode preselection in luma prediction is proposed. In order to maintain low computational

complexity for luma mode preselection, the most probable modes (MPMs), regular modes, and

Hadamard mode are selected. Moreover, in order to balance the throughput of various PUs,

different numbers of RDO candidates are utilized for different PU sizes. Third, a fast RD cost

estimation for CUs is proposed. To reduce the redundant computation and hardware complexity,

instead of re-calculating the CU rate and distortion, the RD cost of CUs is estimated based on the

luma and chroma RDO results. In addition, table-based CABAC rate estimation of luma PUs is

modified slightly to reduce the complexity of hardware implementation. Particularly, a syntax

element “split_cu_flag” is omitted from luma rate estimation, due to the following

considerations. From an algorithm point of view, this flag only involves in the comparison

between CU and sub-CUs. This syntax element is not involved in any RD comparison among

various prediction modes of a given CU. Removal of this syntax element from rate estimation

www.manaraa.com

95

reduces the computational complexity and simplifies hardware circuit implementation.

Compared with the HM-15.0 reference software, the proposed algorithm adaptions reduce the

computational workload by 22%. Our algorithm adaptations remain low data and timing

dependencies that indicate the potential for high-throughput hardware implementation.

The proposed algorithm adaptations have been implemented in the HM-15.0 reference

software. Algorithm simulations are carried out to evaluate video compression performance. All

simulation results are obtained with residual-quad-tree (RQT) disabled. Table 5.2 compares the

losses in the compression efficiency between the existing designs [28, 29, 33, and 47] and this

design. It is clear that the inclusion of derived luma mode in the PU chroma mode prediction

significantly improves the video compression efficiency. To be specific, the average BD-Rate in

this work is 1.97% and 3.79% for 1080P and 4K video sequences, respectively. These BD-Rate

values are lower than the existing designs in [28, 29, 33, and 47] with the same video resolution

(1080P or 4K). The average rate increase (BD-Rate) and quality loss (BD-PSNR) over all the

video sequences (i.e., classes A-F and 4K) are 2.79% and 0.13dB, respectively. If the video

sequences are classes A-E except for Party Scene, Race Horses, and Four People, the average

rate increase (BD-Rate) and quality loss (BD-PSNR) are 2.41% and 0.11dB, respectively, which

are far better than the results in [28, 29, 33, and 47]. More importantly, the proposed algorithm

also greatly improves the worst-case compression performance for classes A-F and 4K.

Particularly, in contrast to our previous design, the worst case of BD-Rate from Basketball Drill

(12.12%) shifts to Slide Show (5.71%) in this work. The worst-case BD-Rate in this work is also

better than [28, 29, 33, and 47]. Compared with the HM-15.0 reference software, the reduction of

computational workloads in chapter 4 is 27%, while it is 22% in this work. Therefore, this work

significantly improves video compression efficiency with a little overhead on computational

www.manaraa.com

96

efforts, especially for the worst-case video sequences. To realize the proposed algorithm

adaptations, a new hardware architecture needs to be developed with high parallelism and

throughput.

Table 5.2 Efficiency comparison between different intra encoding algorithms.

Class Sequences

Zhu [28] Huang [33] Pastuszak [29] Zhang [47] This work

BD-Rate

[%]

BD-PSNR

[dB]

BD-Rate

[%]
BD-PSNR

[dB]
BD-Rate

[%]

BD-PSNR

[dB]

BD-Rate

[%]

BD-PSNR

[dB]

BD-Rate

[%]

BD-PSNR

[dB]

A People On Street 4.61 -0.21 3.1 N/A 5.18 -0.25 3.31 -0.17 1.97 -0.10

A Traffic 4.34 -0.21 4.0 N/A 4.73 -0.22 4.49 -0.22 3.79 -0.18

B Park Scene 3.39 -0.11 3.2 N/A 3.97 -0.15 2.04 -0.09 1.75 -0.07

B Kimono 4.39 -0.12 11.2 N/A 3.42 -0.11 2.92 -0.09 2.72 -0.09

B Basketball Drive 6.73 -0.17 7.7 N/A 7.39 -0.20 4.33 -0.13 1.53 -0.04

B BQ Terrace 4.32 -0.19 3.1 N/A 4.99 -0.20 1.95 -0.09 0.94 -0.04

B Cactus 4.28 -0.14 4.1 N/A 5.70 -0.18 3.87 -0.14 2.90 -0.09

C Basketball Drill 4.63 -0.21 4.2 N/A 8.91 -0.39 12.12 -0.59 4.88 -0.22

C BQ Mall 4.15 -0.20 3.8 N/A 6.23 -0.30 3.30 -0.17 1.71 -0.08

C Party Scene N/A N/A 1.9 N/A 5.39 -0.34 2.76 -0.21 1.82 -0.11

C Race Horses 3.38 -0.19 2.8 N/A 5.74 -0.29 4.97 -0.29 2.81 -0.14

D Basketball Pass 4.80 -0.24 4.6 N/A 7.28 -0.39 6.02 -0.37 3.42 -0.19

D Blowing Bubbles 3.44 -0.19 2.2 N/A 5.91 -0.35 3.63 -0.27 2.29 -0.14

D BQ Square 1.97 -0.15 1.3 N/A 6.41 -0.42 2.37 -0.18 1.46 -0.10

D Race Horses N/A N/A 3.2 N/A 6.78 -0.36 6.12 -0.40 3.78 -0.21

E Kristen And Sara 5.86 -0.24 6.3 N/A 7.88 -0.36 6.28 -0.26 2.53 -0.12

E Four People N/A N/A 4.1 N/A 5.79 -0.29 3.33 -0.16 1.78 -0.09

E Johnny 5.15 -0.21 9.8 N/A 8.03 -0.30 5.31 -0.19 1.44 -0.06

F Slide Editing N/A N/A 2.0 N/A N/A N/A 2.48 -0.36 2.20 -0.28

F Slide Show N/A N/A 6.4 N/A N/A N/A 6.72 -0.59 5.71 -0.48

F China Speed N/A N/A 2.7 N/A N/A N/A 4.12 -0.37 3.08 -0.25

4K Beauty N/A N/A N/A N/A N/A N/A 5.06 -0.08 4.13 -0.05

4K Bosphorus N/A N/A N/A N/A 6.03 -0.16 6.19 -0.16 5.29 -0.13

4K Honey Bee N/A N/A N/A N/A 5.35 -0.08 2.31 -0.04 1.81 -0.02

4K Jockey N/A N/A N/A N/A 7.31 -0.10 4.54 -0.08 3.46 -0.04

4K Ready Steady Go N/A N/A N/A N/A 5.37 -0.16 4.84 -0.11 3.63 -0.10

4K Shake & Dry N/A N/A N/A N/A 2.58 -0.06 1.84 -0.04 1.19 -0.02

4K YachtRide N/A N/A N/A N/A 6.11 -0.13 5.79 -0.16 4.23 -0.13

Avg class B (1080P HD) 4.62 -0.15 5.86 N/A 5.09 -0.17 3.02 -0.11 1.97 -0.07
Average class 4K except for

Beauty
N/A N/A N/A 5.46 -0.12 4.25 -0.10 3.27 -0.07

Average class 4K N/A N/A N/A N/A 4.99 -0.13 3.79 -0.09

Average 1080P HD and 4K except

for Beauty
N/A N/A N/A 5.29 -0.14 3.69 -0.10 2.68 -0.07

Average value for classes A-E
except for Party Scene, Race

Horses, and Four People

4.36 -0.19 4.76 N/A 6.12 -0.27 4.46 -0.22 2.41 -0.11

Average for classes A-F and 4K N/A N/A N/A N/A 4.39 -0.21 2.79 -0.13

Worst-Case of classes A-F and

4K
6.73 -0.17 11.2 N/A 8.91 -0.39 12.12 -0.59 5.71 -0.48

5.3 HARDWARE ARCHITECTURE AND TIMING DIAGRAM

5.3.1 Proposed Hardware Architecture

The proposed high-throughput hardware architecture is developed based on the fully-

parallel intra encoder architecture in chapter 4. As mentioned earlier, when the derived luma

www.manaraa.com

97

mode is added to the chroma prediction, the intrinsic mode dependency introduces data and

timing latency during the chroma rate-distortion optimization process. As a result, the inclusion

of derived luma mode in PU chroma prediction reduces the throughput of video comparison. To

mitigate the degradation in throughput, we propose to double the clock frequency of CABAC

rate estimation modules in the hardware architecture of HEVC intra encoders.

CTU_

Orig_MEM

Orig_Pixel

_Loader

Ref_Gen
CTU_

Ref_MEM

MPM+REG

Mode

Angular

Selection

Prediction

Transform

Transpose

Buffer

Quant

Inverse

Quant

Inverse

Transform

M
U

X
Transpose

Buffer

Recon & Dist

Estimation

Coeff

_MEM

CABAC

Rate

Estimator

Coding Unit Mode Decision

SBMD
NPM_

Buffer

Block_Ref

_Buffer

MPM Generation

PE0 (4×4 PU)

 PE1 (8×8 PU)
PE2 (16×16 PU)

PE3 (32×32 and 64×64 PUs)

Non-PE

Modules

Coeff&

Header

_MEM

CABAC

Entropy

Encoder

CABAC_Coeff_Load_Ctrl

Bit

stream

Asyn

FIFO

Fig. 5.1. Hardware architecture overview of proposed HEVC intra encoder.

Fig. 5.1 shows a block diagram of the proposed hardware architecture. All functional

modules are divided into two groups: prediction engine (PE) modules and non-prediction engine

(Non-PE) modules. The details of design considerations and implementations of each block are

found in [47]. Four parallel PEs perform computational tasks in intra mode prediction, transform,

quantization, inverse quantization, inverse transform, reconstruction, CABAC based rate

estimation, distortion estimation, and simplified block mode decision (SBMD). Each PE is

dedicated to a particular PU size, except for PE3 that is shared by 32×32 and 64×64 PUs for area

efficiency. In this new hardware architecture, one PE that performs chroma prediction has to run

intra prediction for the derived luma mode. For example, PE0 runs chroma prediction for two

www.manaraa.com

98

additional luma modes derived from 4×4 and 8×8 PUs. PE1 performs chroma prediction for the

luma modes derived from 16×16 PUs. PE2 performs chroma prediction for two additional luma

modes derived from 32×32 and 64×64 PUs. The remaining Non-PE modules perform fewer

computational tasks, such as reference pixel storage and preparation, adjacent prediction mode

storage and fetch, MPM generation, original pixel loading, and CABAC entropy coding. The

inclusion of derived luma mode in chroma prediction requires a certain amount of on-chip

storage memory. The discussion of additional memory usage will be described in section 5.3.4.

5.3.2 Proposed Timing Diagram and Balanced Prediction

Let us analyze and illustrate the timing diagram of PE0-2 and their specific data/timing

dependencies. Assuming the video format is YCbCr 4:2:0, the chroma block size of each CU is a

quarter of its luma block size. For example, a 16×16 CU has one 16×16 luma prediction block

and two 8×8 chroma prediction blocks. The only exception is 8×8 CUs with 4×4 partition, which

has the same size of luma and chroma blocks. In order to maximize intra prediction throughput,

four PEs will process different PU sizes simultaneously. Due to the derived luma mode

dependency between PEs, extra latency occurs in chroma prediction.

Fig. 5.2 plots an illustrative timing diagram of PE0-2, which includes the latencies due to

the inclusion of derived luma mode. As each prediction mode in PE0, PE1, and PE2 takes 1, 8,

and 16 clock cycles, respectively, the number of clock cycles required to predict 4×4, 8×8, and

16×16 PUs is marked in Fig. 5.2. In addition, the number of clock cycles required for an RDO

process is determined by the quantization parameter (QP) and CABAC rate estimation. Due to

the context-adaptive feature of CABAC rate estimation, the time required for CABAC rate

estimation varies with prediction blocks and QPs. Therefore, we don’t specify the number of

clock cycles for RDO processes in Fig. 5.2. As shown in Fig. 5.2, for each 8×8 CU, two

www.manaraa.com

99

partitions (i.e., four 4×4 PUs or one 8×8 PU) will be explored and evaluated in PE0 and PE1,

respectively. Besides the four regular chroma modes (i.e., Planar, DC, Vertical, Horizontal), two

additional chroma modes are added in PE0. One mode (J, K) is derived from 4×4 PUs, while the

other mode (M, N) is derived from 8×8 PUs. Since the mode (J, K) has already been derived

from the RDO process of the first 4×4 luma PU, no extra latency occurs in PE0. However, the

prediction of mode (M, N) cannot start until the luma mode of 8×8 PUs is derived from PE1. If

the RDO process of 8×8 luma PUs is complete before intra prediction of mode (M, N), the

derived luma mode dependency does not result in a significant drop in throughput. Otherwise,

intra prediction of mode (M, N) will be postponed until the completion of the RDO process of

8×8 luma PUs. In Fig. 5.2, luma and chroma prediction blocks of 16×16 CUs are processed in

PE2 and PE1, respectively. The four regular chroma modes are appended to four 8×8 PUs,

denoted as UV0-3. Intra prediction of the derived luma mode of 16×16 PUs is denoted as UV4.

If the luma mode of a 16×16 PU has already been determined, prediction of the derived luma

mode of this 16×16 PU will start immediately after UV3. Otherwise, intra prediction of the

derived luma mode will be postponed until the completion of the RDO process of 16×16 luma

PUs. In addition to the prediction of 16×16 luma PUs, PE2 needs to perform chroma prediction

for 32×32 and 64×64 PUs.

The original timing diagram of PU chroma prediction is unbalanced as illustrated in Fig.

5.3, where four regular chroma modes are evenly distributed to four 16×16 luma PUs for intra

prediction, while the prediction of derived luma mode is appended to the fourth 16×16 luma PU.

Since there are two chroma components (chroma U, chroma V) for each mode, the overall 16×16

prediction block numbers of four 16×16 PUs are 9, 9, 9, and 13, respectively. Obviously, due to

the inclusion of derived luma mode, the fourth 16×16 PU needs to process four more chroma

www.manaraa.com

100

prediction blocks than other three 16×16 PUs. This unbalanced prediction block scheme will definitely cause a throughput

degradation, when the RDO process of current 16×16 CU has completed, but PE2 still performs chroma prediction for 32×32 or 64×64

CUs. Therefore, a balanced chroma prediction scheme is proposed to mitigate prediction burden of the last 16×16 PU. In the proposed

scheme in Fig. 5.3, two regular chroma modes of 32×32 CUs will be processed in the third 16×16 PUs, along with one regular chroma

mode of 64×64 CUs. Thus, the total prediction block numbers for corresponding PUs are 9, 9, 11, and 11, respectively. This schedule

rebalance improves the overall processing throughput with a negligible overhead of hardware cost.

Pred 4×4 0 1 2 3 4 5 6 0 1 2 3 4 5 6 0 1 2 3 4 5 6 0 1 2 3 4 5 6A B C D E F G H

Block 4×4_0 Block 4×4_1 Block 4×4_2 Block 4×4_3

J KMN

8×8 PU_M0Pred 8×8 8×8 PU_M1 8×8 PU_M2 8×8 PU_M3 16×16 PU_CB 16×16 PU_CR8×8 PU_M4

8×8 PU Luma RDO
RDO

Luma 8×8

Derived Luma Mode of 8×8 PU

8×8 CU

Mode

Decision

4×4 PU_0 Luma RDO 4×4 PU_1 Luma RDO 4×4 PU_2 Luma RDO 4×4 PU_3 Luma RDO

8×8 PU Luma RD cost

4×4 PU Luma

RD cost

8×8 PU

Chroma

RD cost

Derived Luma Mode of 4×4 PU

RDO

Luma 4×4

PE0

PE1

0 6
7 Luma

Prediction

Modes

A C E G
Chroma U modes

{0, 1, 10, 26}
B D F

Chroma V modes

{0, 1, 10, 26}
J K MN

Chroma Mode

derived from

4×4 PU

Chroma Mode

derived from

8×8 PU

H

4×4 PU & 8×8 PU Chroma RDO

4×4 PU

Chroma

RD cost
RDO Chroma 4×4

PE1 PU8×8

16×16 PU Luma RDO

PU8×8 PU8×8 PU8×8

16×16

CU

MDPE2

UV0 UV1 UV2 UV3 UV4

RDO

Luma 16×16

16×16 PU_M0 16×16 PU_M1 16×16 PU_M2 16×16 PU_M3 32×32 PU_CB 32×32 PU_CR16×16 PU_M4 64×64 PU_CB 64×64 PU_CRPred 16×16

UV0-3

PU 16×16 chroma

prediction of mode 0, 1,

10, 26

UV4

PU 16×16 chroma

prediciton of the derived

luma mode

Pred 8×8

CU 8×8

Mode Decision

CU 16×16

Mode Decision

16×16 PU

Luma RD cost

Derived Luma Mode of

16×16 PU

9 9 9 13

8 8 8 8 8 8 8

40 1640 16 40 3240 16

16 16 16 16 16 16 16 16

Fig. 5.2. Timing diagram of PE0-2 and their data/timing dependency.

www.manaraa.com

101

PE2
16×16 PU_0 32U0 32V0 64U0 64V0 16×16 PU_1 32U1 32V1 64U1 64V1 16×16 PU_2 32U2 32V2 64U2 64V2 16×16 PU_3 32U3 32V3 32U4 32V4 64U3 64V3 64U4 64V4

5 Luma + 4 Chroma

16x16 prediction blocks
5 Luma + 4 Chroma

16x16 prediction blocks

5 Luma + 4 Chroma

16x16 prediction blocks

5 Luma + 8 Chroma

16x16 prediction blocks

PE2
16×16 PU_0 32U0 32V0 64U0 64V0 16×16 PU_1 32U1 32V1 64U1 64V1 16×16 PU_2 32U2 32V2 64U2 64V2 16×16 PU_332U3 32V3 32U4 32V4 64U3 64V3 64U4 64V4

5 Luma + 4 Chroma

16x16 prediction blocks
5 Luma + 4 Chroma

16x16 prediction blocks

5 Luma + 6 Chroma

16x16 prediction blocks

5 Luma + 6 Chroma

16x16 prediction blocks

Unbalanced Prediction Block Schedule

A Balanced Prediction Block Schedule

Fig. 5.3. The unbalanced and balanced block schduling schemes.

5.3.3 Proposed Double-Clock Rate Estimation

Since the table-based CABAC algorithm is adopted in luma PU rate estimation, the overall system throughput is severely

affected by the rate estimation throughput. Although the computation in the CABAC rate estimators is conceptually similar to the

CABAC entropy encoder, such as syntax binarization, context-adaptive modeling. The difference is that the CABAC entropy encoder

outputs an encoded bit-stream, while the CABAC rate estimator outputs a bitrate estimate. The details of the hardware implementation

of table-based CABAC rate estimators are described in [48]. To mitigate the throughput degradation due to the derived luma mode in

PU chroma prediction, CABAC rate estimators are proposed to operate at a double clock rate. This is because CABAC rate estimators

are neither computationally-intensive nor logic-complex, they can operate at a much higher clock rate (e.g., 640 MHz with TSMC

90nm process), while remaining blocks in the intra encoder operate at a lower clock rate (e.g., 320MHz with TSMC 90nm process). In

this work, 13 rate estimate instances are employed to satisfy the performance requirements of UHD video compression. Specifically,

www.manaraa.com

102

7, 2, 2, 1, and 1 rate estimate instances are allocated to intra prediction of 4×4, 8×8, 16×16,

32×32, and 64×64 PUs, respectively.

In this dual clock rate hardware architecture, the correctness of data and signal transition

across the clock domains is required. In this work, a handshake synchronizer is used to ensure

proper transmission of control signals across the boundaries of two clock domains. In addition,

an asynchronous first-in-first-out (AFIFO) register is used to handle different reading and writing

frequencies of quantized coefficients. As shown in Fig. 5.1, an AFIFO block is located between a

CABAC rate estimator and Coeff_MEM inside each PE. Table 5.3 lists the detailed information

of AFIFOs in each PE. The width of all AFIFOs is 256, and the depth varies with PE. In PE0, an

AFIFO of depth 1 is implemented for all 7 rate estimate instances. Because the writing frequency

is much slower than the reading frequency, if a 4×4 block of a rate estimate instance is available,

all 7 rate estimate instances immediately read the AFIFO. However, in the PE1~PE3, the AFIFO

depth is set to 4. For 8×8 and 16×16 PUs, two AFIFOs have been instantiated and each AFIFO

corresponds to one rate estimate instance.

Table 5.3 Asynchronous FIFO number and depth in each PE.

PE Number of RDO candidates
AFIFO

Number Depth

PE0 7 1 1

PE1 2 2 4

PE2 2 2 4

PE3 1 for 32×32 PUs, 1 for 64×64 PUs 2 4

5.3.4 Memory Usage

Since an additional chroma mode is added for each chroma PU, a little more on-chip

memory is required in this proposed hardware architecture. Since the on-chip memory is shared

for both luma and chroma modes in original and predicted pixels, the on-chip memory size for

original pixels and predicted pixels remains the same as in [47]. The on-chip quantization

www.manaraa.com

103

memory adds 43,008 bits, and the on-chip reconstruction memory adds 21,504 bits. Table 5.4

summarizes the on-chip memory usage of all PE and non-PE modules. Compared with our

previous work [47], where the total on-chip memory usage is 120KB, this proposed intra encoder

hardware architecture needs a total amount of 127KB on-chip memory. This result shows that

the inclusion of derived luma mode needs 7KB on-chip memory, so our proposed algorithm

adaptations do not result in a significant increase in memory usage.

Table 5.4 Memory usage in the proposed intra encoder (unit: bit).

 ORIG_MEM PRED_MEM QUANT_MEM RECON_MEM Total(PE)

PE0 Register Register Register Register None

PE1 2×24×32 2×40×32 2×120×64 1×120×64 27,136

PE2 4×48×32 4×80×32 4×880×64 2×880×64 354,304

PE3 8×32×32 8×160×32 8×256×64 4×256×64 245,760

Total (PE) 15,872 53,760 371,712 185,856 627,200

Non-PE

Coeff&Header_MEM 256,960

CTU Orig_MEM 98,304

CTU Ref_MEM 62,464

Total 1,044,928

5.4 EXPERIMENTAL IMPLEMENTATION AND RESULTS.

The proposed highly-parallel hardware architecture of HEVC intra encoder has been

described in Verilog and synthesized by field programmable gate array (FPGA) and application

specific integrated circuit (ASIC). The FPGA implementation is based on Altera Stratix V GX,

and the ASIC implementation uses TSMC 90nm technology. The maximum operating clock

frequencies for the FPGA and ASIC implementations are 120MHz and 320MHz, respectively.

www.manaraa.com

104

Table 5.5 Resource comparison between FPGA and ASIC implementations.

Module
Stratix V GX (# of ALUT + # of DSP) TSMC 90nm (K gate)

PE0 PE1 PE2 PE3 PE0 PE1 PE2 PE3

Intra Prediction 7268 + 64 12616 + 64 19666 + 82 25660 + 106 61.1 97.1 124.4 185.9

Trans 2568 + 56 1443+ 24 3133 + 50 10803 + 224 33.8 24.1 65.8 244.0

Quant 1127 + 16 582 + 8 1309 + 16 2497+ 32 28.2 13.9 29.0 57.6

iQuant 368 + 16 184+ 8 368 + 16 704 + 32 24.9 12.3 24.3 47.4

iTrans 3820 + 56 1782 + 24 3542 + 52 11161 + 222 38.2 26.7 61.9 236.0

Reconstruction 320 160 320 640 1.8 0.9 1.7 3.4

Distortion Calculation 401 + 12 197 + 6 410 + 12 817+ 24 7.2 3.4 6.9 13.5

Rate Est & SBMD 11183 + 8 6043 + 3 5924 + 4 5461 + 2 84.4 69.4 76.4 68.6

Ref_Gen 5616 6281 5574 3022 15.4 12.7 12.3 19.5

Block_Ref_Buffer 2267 24.7

MPM_Gen 622 5.4

Orig_Pixel_Loader 16155 165.8

Main Ctrl Logic 305 1.1

CABAC_Coeff_Load_Ctr 2683 34.2

CABAC Entropy Encoder 5119 + 2 32.6

Total 195883 + 1244 2186.4

Table 5.6 Comparison of H.265/HEVC intra encoder hardware implementations.

Architecture Zhu [28] Tsai [32] Huang [33] Pastuszak [29] Zhang [47] This work

Technology TSMC 90nm TSMC 28nm SMIC 55nm TSMC 90nm TSMC 90nm TSMC 90nm

Frequency [MHz] 357 312 294 200/400 320 320/640

Supported PU Size No 64×64 PU No 4×4, 8×8 PUs No 64×64 PU No 64×64 PU All All

Supported TU Size All No 4×4 TU No 32×32 All All All

RDO luma candidates [4, 4, 4, 4] N/A [8, 4, 4, 2] [12, 10, 4, 3] [7, 5, 5, 4, 1] [7, 5, 5, 4, 1]

RDO chroma candidates N/A N/A 1 5 4 for all PUs 5 for all PUs

Rate Estimator
Prediction Error Based

Approximation
Table-based

CFBAC
Table-based

CABAC
Bin Counting

Highly-parallel

Table-based
CABAC

Highly-parallel

Table-based
CABAC

Resolution 1080P @ 44fps 8K @ 30fps
1080P @

60fps
4K @ 30fps 4K @ 30fps 4K @ 30fps

Quality Losses [BD-
PSNR]

0.15dB (for 1080P) 0.8dB (for 8K) N/A

0.17dB (for

1080P)
0.11dB (for 4K)

0.11dB (for 1080P)
0.13dB (for 4K)

0.07dB (for

1080P)
0.09dB (for 4K)

Rate Increase [BD-Rate] 4.62% (for 1080P) 17% (for 8K)
5.86% (for

1080P)

5.09% for

(1080P)
5.46% (for 4K)

3.02% (for 1080P)
4.99% (for 4K)

1.97% (for 1080P)
3.79% (for 4K)

Worst-case Quality
Losses [BD-PSNR]

0.17dB N/A N/A 0.39dB 0.59dB 0.48dB

Worst-case Rate Increase

[BD-Rate]
6.73% N/A 11.2% 8.91% 12.12% 5.71%

Gate Count + Memory 2269 K + N/A 8250 K + 7.14 MB 1572 K + N/A 1086 K + 52 KB 2288 K + 120 KB
2186 K + 127

KB

Power [mW] 217.9 708 194 273 236 290

Table 5.5 reports the resource unitization in the FPGA implementation, including

resource consumption details for each module. The clock gating technique is utilized for low

power purpose during the ASIC synthesis process. Table 5.6 summarizes the hardware

implementation and performance comparison of this work with existing state-of-the-art designs

www.manaraa.com

105

[28, 29, 32, 33, and 47]. This work supports all PU and TU sizes, as well as five RDO chroma

candidates. The maximum operating clock frequencies for CABAC rate estimators and other

modules are 640MHz and 320MHz, respectively. Under the same encoding throughput, this

proposed work achieves the lowest quality loss (BD-PSNR) and rate increase (BD-Rate) over the

designs in [28, 29, 32, 33, and 47]. These results indicate the best video compression efficiency

over all existing designs in the literature. We can see that the throughput degradation due to the

inclusion of derived luma mode is successfully compensated by doubling clock frequency in

CABAC rate estimators. Regarding the worst-case rate increase and quality losses, Table 5.6

shows that the proposed design achieves the best compression performance for the worst-case

video sequences in classes A-F and 4K. Particularly, in contrast to [47], the worst-case BD-Rate

is improved from 12.12% to 5.71%.

Referring to the smallest two-input NAND gate, the total gate count is 2186K. Compared

with [47], the logic gate count of this design is slightly lower. This slight reduction is explained

below. First, in this work, since the derived luma mode is implemented in chroma prediction,

extra logic gates are required. Second, in this work, the implementation of dual-clock rate

CABAC rate estimation and asynchronous FIFOs increase logic gate consumption. Third, in this

work, a great number of redundant logics are removed from the entire design, which significantly

reduces the number of logic gates. For example, compared with Table 4.10 in [47], Table 5.5

shows that the removal of redundant logic in transforms and inverse transforms in PE0 and PE3

reduces around 80K logic gates. Due to the above three reasons, the total logic count of this work

is slightly lower than the design in [47]. Compared with [47], the power consumption of this

work increases by 54mW, this is mainly attributed to the higher operation frequency of CABAC

rate estimators. Considering the fact that power consumption is a design metric that is relatively

www.manaraa.com

106

less critical than video compression performance and throughput, it seems like a good trade-off

to spend a little bit more power in significantly improving compression quality, especially for the

worst-case videos. In practice, if the required video encoding throughput is not very high (e.g.,

4K@20fps, 1080P@60fps), there is no need to double the clock frequency for rate estimators.

Thus, our entire intra encoder ASIC can be configured to run at 320MHz. In this way, our

proposed design will achieve a similar level of power consumption as [47], while still

performing much better video compression performance than the designs in [28, 29, 32, 33, and

47].

5.5 CONCLUSION

This chapter presents efficient algorithm adaptations and a high-throughput HEVC intra

encoder hardware architecture. We identify that the derived luma mode has a non-negligible

effect in video compression efficiency. Therefore, we propose to include it in PU chroma

prediction, along with simplified chroma rate estimation, PU luma mode preselection, modified

CU mode decision, and simplified CABAC rate estimation. Compared with the HM-15.0

software, this work saves computational efforts by 22%, while the average BD-Rate and BD-

PSNR for all test sequences are 2.79% and -0.13dB, respectively. More importantly, the

proposed algorithm adaptations greatly improve the worst-case compression performance over

existing designs in the literature. We also develop an efficient high-throughput hardware

architecture. We propose new timing diagrams to properly allocate the processing orders for

prediction and RDO processes in PEs. We also propose a more balanced prediction block

schedule to mitigate the throughput degradation due to the inclusion of derived luma mode in PU

chroma prediction. The entire design has been synthesized and implemented in an FPGA and an

ASIC. The ASIC implementation in TSMC 90nm technology shows that it supports real-time

www.manaraa.com

107

high-throughput UHD video encoding of 4K videos at 30 fps with a little overhead increase in

on-chip memory and power consumption.

www.manaraa.com

108

CHAPTER 6

DEEP LEARNING BASED MODE PRESELECTION

In recent years, the rapid development of machine learning approaches has been applied

to a wide range of fields, such as autonomous driving, intelligent robotics, computer vision,

speech analysis, object detection, and classification. Among various machine learning strategies,

deep learning has been proved to be effective in some tasks, where traditional mathematical

approaches do not perform these tasks well [49]. The superior ability to explore the potential

characteristics of input data is the greatest advantage of deep learning over mathematical

algorithms [50]. Advances in technologies such as integrated circuit (IC) design, IC fabrication,

parallel and cloud computation, and communications have made it possible to conduct deep

learning through extensive training data. Inspired by its superior performance to human experts,

we propose to introduce a deep learning method to improve the performance of the proposed

HEVC intra encoder. A neural network that contains only fully connected layers is employed to

roughly select a mode for luma blocks. The proposed fully connected layer based neural network

(FCLNN) is incorporated into a two-stage mode preselection scheme, which outputs one or two

modes to an intra predictor. Experiments have shown that the proposed mode preselection

scheme can achieve mode accuracy of approximately 85%.

6.1 INTRODUCTION

The concept of Machine Learning (ML) was proposed and interpreted by Arthur Samuel,

Tom M. Mitchell, and Alan Turing in the middle 20th century. ML investigates algorithms and

structures that enable computers to perform complex tasks manually. As one of the most

important ML frameworks, artificial neural networks (ANNs) have recently attracted more and

more interest. An ANN consists of artificial neurons (nodes) that mimic biological neurons in the

www.manaraa.com

109

human brain. Multiple nodes can form a layer, and a neural network typically has more than one

layer. Similar to a synapse, a connection between two nodes is defined to transfer signals from

one layer to another. Therefore, there are no connections within a layer. Each neural node

receives input data, processes the received data, and sends the result to the next layer. A common

neural network includes an input layer for receiving external data, a hidden layer for processing

input data from the previous layer and sending the results to the next layer, and an output layer

for sending results out of the neural network.

IN0

IN1

HL0

HL1

HL2

HL4

IN2

OUT0

OUT1

Input Layer Hidden Layer Output Layer

connections

HLx

Input 0

Input 2

Input 1

w0

w1

w2

Biasx

1

Outputx

A three-input hidden node

Fig. 6.1. Basic neural network structure (left) and neural node (right).

As shown in Fig. 6.1, this neural network contains three layers with a feedforward

topology, where the data flow from input to output is strictly feedforward. Each hidden node

receives input signals and produces the corresponding result using the following equation:

 Outputx = Func {∑ (Inputi*wi) + Biasx} (6.1)

where Func is an activation function for determining the output of a neuron according to

the weighted sum of input signals plus the bias term. The activation function is used to constrain

the produced result of each node within a valid range, which makes sense for the subsequent

www.manaraa.com

110

neurons. A number of activation functions have been proposed, such as Sigmoid, ReLu, Tanh,

etc. ReLu (rectified linear unit) is the most widely used activation function in neural networks.

Its idea is to convert a negative input to zero, while keeping a positive input unchanged.

 (6.2)

As shown in (6.2), ReLu is a simple activation function, but it has several advantages.

First, it is a nonlinear function, which means stacked layers can provide more possibilities. Thus,

multiple layers can be used. Second, ReLu is a sparse function that disables insignificant nodes

to save computation and energy. Compared to Sigmoid and Tanh, it is less computationally

expensive and more suitable for large-scale networks.

In this dissertation, we propose a two-stage HEVC mode preselection scheme, which

roughly selects intra prediction modes of each PU in a CTU. The first stage of the proposed

mode preselection scheme determines the mode group for each PU, which includes prediction

modes with similar prediction directions. According to different prediction angles, all 33 intra

prediction modes are divided into 8 groups. So each mode group contains 4 or 5 prediction

modes. In the second stage, a fully connected layer based neural network (FCLNN) is adopted to

further refine the mode prediction results of the first stage. The proposed neural network is

feedforward and utilizes ReLu as its activation function. Experiments are conducted to determine

the numbers of neurons and layers.

The rest of this chapter is organized as follows. A literature review of machine learning

approaches in video compression is presented in section 6.2. The proposed mode preselection

framework is introduced in section 6.3. Experimental results are given in section 6.4. Section 6.5

concludes the contribution of this approach.

www.manaraa.com

111

6.2 LITERATURE REVIEW

As discussed in the previous chapters, the computational complexity of an HEVC intra

encoder has drastically increased due to the enhanced coding tools, such as 35 prediction modes,

larger CTU sizes, quad-tree coding structures, various CU/PU/TU combinations, and time-

consuming CABAC rate estimation. All of these enhancements lead to a complex rate-distortion

optimization process for HEVC. Inspired by the enormous potential of discovering distinguished

features of learning-based approaches, many research efforts have been made to apply machine

learning to video compression [51-56].

The researchers in [57] proposed to utilize Convolutional Neural Network (CNN)

classifiers to replace the conventional rate-distortion optimization for mode decision in HEVC

intra encoders. They use raw pixel values as inputs to the CNNs to avoid data dependencies

between neighboring blocks. Therefore, the mode decision of all blocks can be performed in

parallel to maximize computational throughput. The proposed neural network consists of two

convolutional layers, three ReLUs, one max pooling, and two fully connected layers. This

approach has been validated by the HEVC screen content coding (SCC) reference software. The

average BD-Rate loss is negligible, only 0.52%. However, the high efficiency of the proposed

method in screen context coding does not guarantee similar performance in the general content

video coding.

In [58], an intra prediction convolutional neural network (IPCNN) is proposed that relies

on the rich context between the current block and its neighboring blocks. Unlike the traditional

intra prediction that employs the nearest reference lines to predict the current block, IPCNN

adopts three nearest reconstructed blocks to fully utilize the spatial correlation between the

current block and its neighboring blocks. The input to the IPCNN contains pixels of three

www.manaraa.com

112

neighboring reconstructed blocks, while the output is the best prediction of the current block.

IPCNN consists of 10 convolutional layers, 9 ReLU layers, and 8 batch normalization layers.

Experiments show that the proposed IPCNN can achieve an average reduction of 0.70% in BD-

Rate. However, since the proposed network in [58] only supports 8×8 PUs, its efficiency in PUs

of other sizes is unknown.

Similar to [58], the researchers in [59] proposed an intra-prediction fully connected

network (IPFCN), where all layers are fully connected. This network relies on the spatial

correlation between the current block and its neighboring blocks. Particularly, the input is a

number of reference lines and the output is the prediction of the current block. Experiments have

been conducted to investigate the effects of network depth and size. A three-layer network

exhibits the best performance, with 128 nodes per layer. The proposed network has been

incorporated into the HM reference software. Experimental results show IPFCN saves an

average of 1.1% bitrate. However, this work only investigates intra prediction of 8×8 blocks.

In [60], the authors proposed CNNs to obtain candidate modes for the RDO process, so

the original rough mode selection process can be skipped to reduce the computation effort.

Moreover, the proposed CNN generates intra prediction modes only by relying on the original

pixel values of the current block and the quantization parameter (QP), which means that the

CNN mode decision of the current block is independent of the reconstructed neighboring blocks.

Therefore, mode prediction of multiple prediction blocks can be performed in parallel to improve

the prediction throughput. Experimental results show that this approach can save approximate

28% of the coding time, and the average BD-Rate only increases by 1.15%.

All of the above examples have developed specific learning frameworks to improve

prediction performance and reduce the computation complexity of HEVC intra prediction. Like

www.manaraa.com

113

other research works, we focus on applying machine learning to video compression, regardless

of its implementation cost, especially in hardware encoders [61]. So far, little prior studies can be

found to develop hardware-affordable neural networks for HEVC intra-frame coding.

In [62], the authors designed a fast CNN-based algorithm that reduces RDO complexity

by decreasing the CU partition modes in each CTU. Their algorithm relies on the preprocessing

of current-block pixel values, so parallel processing of multiple prediction blocks is realized. The

proposed CNN-based intra prediction scheme saves an average of 61.1% of the coding time,

while the BD_Rate increases by 2.67%. Moreover, a comparative evaluation of performance and

resource consumption has been done in hardware. Experimental results show that the hardware

implementation of the proposed CNN using TSMC 65nm technology runs at 714 MHz, whereas

the corresponding power and area consumptions are 16.2mW and 42.5k gate, respectively.

Based on the above discussion, we can find that most research efforts have been made to

decrease the computational complexity of the RDO process from an algorithm perspective.

Considering that after applying CNN-like optimization algorithms, the ultra-high definition

(UHD) video coding is too intensive to be implemented in software in real-time applications,

there is an urgent need to develop a hardware-oriented neural network framework that can be

integrated into hardware video encoders.

6.3 PROPOSED NEURAL NETWORK BASED MODE PREDICTION

In this section, we propose a fully connected layer based neural network (FCLNN)

framework [59], which preselects intra prediction candidate modes for each luma prediction

block. As the proposed FCLNN is hardware-oriented, it can be integrated into our previously

designed HEVC intra encoder to further improve the coding performance in two ways.

First, the FCLNN can improve the intra prediction throughput by removing rough mode

www.manaraa.com

114

selection (RMS), which has been widely used in intra prediction to reduce candidate modes for

the RDO process. In our intra encoder design, we adopt Hadamard transform to select candidate

modes for the RDO process based on the residual blocks after intra prediction. Although the

Hadamard transform is not as complex as the DCT transform, it still brings some latency to intra

prediction due to the large number of prediction modes. Furthermore, due to the data

dependencies inherent in intra prediction, the strict correlation of consecutive prediction blocks

hinders the high-throughput implementation. To reduce data dependencies, the FCLNN is

designed to utilize the original pixels of the current block rather than the reconstructed pixels of

its neighboring blocks, so multiple PUs can be processed in parallel regardless of the size and

location of PUs. To reduce the latency by mode preselection, the FCLNN is implemented prior

to intra prediction in an extra pipeline stage. The throughput of intra prediction can be improved.

Second, the FCLNN is expected to improve coding efficiency in terms of video quality

and encoding stream bitrate. In order to improve the coding efficiency of intra encoders, more

accurate intra prediction is strongly required. In our intra encoder, Hadamard cost is used to

select the candidate modes for RDO process. The Hadamard transform does not guarantee the

selection of the global optimal mode, so the RDO result is likely to be a local optimal mode. It is

reported that deep learning approaches possess a superior capability in discovering high-

dimensional or complex features compared to traditional mathematical patterns. Therefore, it is

reasonable to use neural networks for mode preselection.

6.3.1 Proposed Mode Preselection Scheme

HEVC defines 35 intra prediction modes, including DC, Planar, and 33 angular modes.

The DC and Planar work well in the smooth regions, while the 33 angular modes are evenly

distributed on upper-left reference lines. Angular modes usually exhibit similar predictions over

www.manaraa.com

115

a small range of angular variations. Inspired by this observation, we propose a candidate mode

selection method that includes a smoothness checker, angle detection, and neural networks to

preselect intra prediction modes for luma blocks. First, it will always check if the prediction

block is a smooth block. A threshold-based sample filter is designed to eliminate homogenous

prediction blocks, which trap the neural networks in ill-conditions. Then, an angle detector will

be applied to the prediction blocks after the smoothness test. All 33 angular modes will be

divided into 7 groups, each of which contains a certain number of highly correlated angular

modes. A variable (Group_Idx) is produced by the angle detector. This Group_Idx is used to

select the corresponding FCLNN design, which determines the output prediction mode of the

current block. Each FCLNN is dedicatedly trained for a specific mode group.

Current Block

Small FCLNN

[Group_idx]

Group Mode Detector

(4, 9, 14, 19, 24, 29, 33)

Yes

No

Biased Original

Pixel Values

Small FCLNN 0

Small FCLNN 2

Small FCLNN 1

Small FCLNN 3

Small FCLNN 5

Small FCLNN 4

Small FCLNN 6

Group_Idx

Selected mode

Smoothness Checker

> Threshold

Texture

Analysis

Smooth Level

DC or Planar

Selected mode

Fig. 6.2. Proposed deep learning-based mode preselection scheme.

Fig. 6.2 shows the proposed mode preselection scheme, which consists of three major

components: Smoothness Checker (SC), Group Mode Detector (GMD), and fully connected

layer based neural networks (FCLNNs). The SC is used to calculate the smoothness of the

current block. A threshold is predefined based on statistical analysis before starting mode

www.manaraa.com

116

preselection. If the current block is in a smooth region, the candidate mode will be selected from

DC and Planar by texture analysis. Because DC is preferred in smoother regions. If the smooth

level of the current block is greater than the threshold, the GMD is applied to the current block to

find the best mode group. Once the mode group is determined, a dedicated FCLNN is utilized to

refine the selection within the mode group. Each mode group contains 3 to 5 intra prediction

modes. The input signals to the FCLNN are the biased pixel values, which are derived by

subtracting the minimum pixel value from the original pixel values of the current block.

To determine the best candidate mode for each PB, we adopt a two-stage approach in this

research. The first stage is a rough selection of mode groups, while the second stage performs

mode refinement and selects an optimal mode from the selected mode group. Mode group is

determined by examining the prediction results of seven typical prediction modes with original

pixel values rather than the reconstructed reference lines. If the best prediction mode is within a

specific group, its neighboring modes in the same group are also likely to have better prediction

than the modes in other groups. Once the mode group is determined, the FCLNN is used to find

the best prediction mode in this group. The design details will be presented in the next section.

6.3.2 FCLNN Based Mode Refinement

In this section, the FCLNN-based mode refinement is presented. Since all 33 angular

modes are split into 7 groups and each mode group requires a dedicated trained FCLNN, the

number of FCLNNs introduced is also 7. However, due to the angular mode splitting, each

FCLNN has less modes to be recognized, compared to the traditional training method. Therefore,

the scale of FCLNN can be drastically decreased. Table 6.1 lists the details of angular mode

division and the corresponding FCLNN index for each group.

www.manaraa.com

117

Table 6.1 Details of angular mode splitting.

FCLNN Index Angular Mode Group

0 2, 3, 4, 5, 6

1 7, 8, 9, 10, 11

2 12, 13, 14, 15, 16

3 17, 18, 19

4 20, 21, 22, 23, 24

5 25, 26, 27, 28, 29

6 30, 31, 32, 33, 34

IN0

IN1

HL11

HL21

HLN1

IN63

Input Layer Hidden Layers with M× N Neurons Output Layer

HL1M

HL2M

HLNM

MD0

MD1

MD2

MD3

MD4

Fig. 6.3. Structure overview of fully connected layer based neural network.

In this dissertation, we propose a fully connected layer based neural network, which is

capable of performing mode selection with deep learning capability. As shown in Fig. 6.3, the

basic structure of FCLNN consists of one input layer, M hidden layers, and one output layer. The

input layer is intended to cope with an 8×8 block that contains 64 biased pixel values. The hidden

www.manaraa.com

118

layer contains M layers with N neurons per layer. The output layer has 5 output nodes in Fig. 6.3.

For mode group 6, the number of output nodes in FCLNN6 is 3. In the following discussion, we

will use FCLNN0 as an example.

The basic structure of FCLNN0 is shown in Fig. 6.3. However, the number of neurons

(N) and layers (M) remains to be determined. Two experiments are conducted to derive the value

of M and N, respectively. In the first experiment, we fix the number of neurons per layer to study

the best layer number. Then, we fix the number of layers to investigate the best neuron number.

6.4 EXPERIMENTAL RESULTS

To investigate the best FCLNN structure, we have conducted several experiments. As a

preliminary study, we only use 8×8 blocks as our target block for mode preselection in the

experiment. Training data and test data are collected from the HM-15.0 reference software. An

open-source color image database-UCID [63] has been used as the input video sequence for HM-

15.0. If the 8×8 block passes the smoothness checker based on a predefined threshold design, it

is collected as a valid training sample. The smoothness checker aims to remove homogeneous

blocks of pictures that tend to capture neural network under ill-conditions. Filtered training

blocks with corresponding prediction modes will be assigned to different training groups, each

dedicated to training a specific FCLNN. Meanwhile, the homogeneous image block will select

DC or Planar as its intra prediction mode according to the texture analysis.

Table 6.2 illustrates the training results of proposed fully connected layer based neural

network with 2 hidden layers and different neurons. In our experiments, 4 different neuron

numbers per hidden layer have been used from 32 to 256. As shown in Table 6.2, with the

average increase in neurons, the training accuracy has increased from 59.14% to 88.07%. The

experiment was conducted under the following conditions: 200,000 training iterations, 2 hidden

www.manaraa.com

119

layers, 5,000~20,000 training samples. Obviously, the number of neurons in each layer can

certainly improve the training accuracy of the proposed FCLNN.

Table 6.2 Training accuracy of different groups with 2 hidden layers.

Group N=32 N=64 N=128 N=256

0 50.76% 67.15% 80.60% 91.29%

1 63.08% 63.74% 73.12% 84.07%

2 63.06% 70.90% 81.64% 87.83%

3 71.27% 85.17% 91.66% 92.91%

4 54.85% 76.62% 84.23% 89.07%

5 53.40% 55.85% 68.90% 82.05%

6 57.57% 71.60% 81.78% 89.30%

Average 59.14% 70.15% 80.28% 88.07%

Fig. 6.4 shows the relationship between training accuracy and training effort for all 7

FCLNNs. For each FCLNN, more training iterations will result in higher training accuracy.

However, after a certain number of iterations, the improvement in training accuracy becomes

trivial. For example, in our experiments, after 300,000 training iterations, the accuracy of each

FCLNN becomes stable. The experiments are performed with 128 neurons and 2 hidden layers.

It is ineffective to continue training after the neural network converges. The main purpose of this

experiment is to investigate the relationship between training accuracy and iteration. More

experiments have been conducted to investigate the effects of different hidden layers on training

accuracy. For each experiment, we use 300,000 and 500,000 training iterations. Considering the

hardware feasibility, the maximum number of hidden layers studied here is four and each hidden

layer includes 128 training neurons.

www.manaraa.com

120

Fig. 6.4. Training accuracy vs training iteration.

The experimental results are illustrated in Fig. 6.5, where more training iterations do not

result in more training gains in terms of training accuracy. Regardless of the training layers,

increasing the number of training iterations from 300,000 to 500,000 brings negligible accuracy

improvements. When the number of hidden layers increases from one to four, the training

accuracy has been improved. However, the experimental results with four hidden layers are

slightly reduced compared to the training accuracy with three hidden layers. The experiments

indicate that a larger network structure does not lead to a better machine learning result. This

phenomenon is called overtraining, which is a common issue in the field of machine learning. So

far, we have presented several experimental results of proposed FCLNN in mode prediction.

FCLNN is the most important part of proposed mode preselction scheme, which is expected to

reduce the computational complexity of the RDO process in H.265/HEVC intra encoders. In

order to study the best neural network structure from the aspects of layer and neuron numbers,

several experiments have been conducted. Hardware implementation should also consider

www.manaraa.com

121

resource consumption, which is extremely important in low power devices.

Fig. 6.5. Training accuracy vs hidden layer numbers.

6.5 CONCLUSION

In this chapter, we present a preliminary study on the application of machine learning

techniques to video compression. A potential mode preselection scheme is proposed to reduce

the computational complexity of HEVC intra encoders. The mode preselection scheme utilizes

the mathematical correlation between directional prediction modes and proposes a rough angle

detection algorithm. Seven small scale fully connected layer based neural networks (FCLNNs)

are employed to refine mode selection after angle detection. Each FCLNN is exclusively trained.

7 FCLNNs have the same neural network structure in order to reduce hardware implementation

cost. Experiments show the proposed FCLNN can achieve an approximate prediction accuracy

of 80%-90% under different training efforts and neural network structures. The experimental

results indicate that machine learning can perform mode identification for video compression.

However, when it comes to real hardware implementation of machine learning, different

application scenarios will have different concerns in terms of performance, logic area, and power

www.manaraa.com

122

consumption. For each application, a dedicated neural network structure needs be sophisticatedly

designed for optimal performance and cost balance.

www.manaraa.com

123

CHAPTER 7

CONCLUSION AND FUTURE WORK

7.1 CONCLUSION

In this dissertation, we investigate to efficiently implement HEVC intra encoders in

hardware. From the perspective of algorithm, based on the complexity analysis, we propose

efficient HEVC algorithm adaptations, which significantly reduce the computational complexity

of RDO. The proposed algorithm adaptations exhibit better compression efficiency than existing

state-of-the-art designs. Moreover, since all algorithm adaptations have been developed under

consideration of hardware implementation, they are friendly to implement in hardware. From the

hardware design point of view, we propose a fully-parallel hardware architecture of HEVC intra

encoder, which performs the complete cycle of RDO process and entropy coding. In order to

parallelize intra prediction of different size PUs, the proposed design consists of four

independent prediction engines. To accelerate the rate prediction, a group-based parallel syntax

processing scheme is proposed and multiple rate instances are utilized.

The proposed intra encoder demonstrates superior compression efficiency in most

scenarios, however, compression efficiency in the worst cases is observed to be relatively low.

Further investigation finds that performance degradation is caused by the exclusion of derived

luma mode in chroma prediction. Inspired by this observation, we propose to include the derived

luma mode. An improved architecture is then developed based on the previous one. To alleviate

throughput decreasing due to mode dependency, the clock frequency of rate estimation has been

doubled in the new architecture design. The experimental results show our new design exhibits

better compression efficiency than the first design with a slight overhead of power and area,

meanwhile, it sustains real-time 4K video compression at 30fps.

www.manaraa.com

124

7.2 FUTURE WORK

The complexity of HEVC video compression is mainly caused by the increased number

of prediction modes and partitions. In chapter 6, we proposed to utilize deep learning to predict

prediction mode to reduce the computational complexity of intra prediction. This preliminary

work shows a learning-based approach is suitable for mode preselection in intra encoder.

However, there are still lots of aspects that need to be improved. First, the mode preselection

accuracy can be improved. An investigation of the best neural network structure is strongly

desired. More experiments have to be conducted. Second, to implement the neural network in

hardware, the data format has to be considered in advance. For example, the precision of

floating-point numbers can be reduced from 32 to 16, in order to save area and power. Thus, our

future work will focus on the study of using machine learning to ease video compression.

www.manaraa.com

125

REFERENCES

[1] X. Chen, S. Zhang and J. Liu, "Design of UAV video compression system based on H.264

encoding algorithm," Proceedings of 2011 International Conference on Electronic &

Mechanical Engineering and Information Technology, Harbin, 2011, pp. 2619-2622.

[2] A. Geiger, P. Lenz and R. Urtasun, "Are we ready for autonomous driving? The KITTI

vision benchmark suite," 2012 IEEE Conference on Computer Vision and Pattern

Recognition, Providence, RI, 2012, pp. 3354-3361.

[3] S. Ji, W. Xu, M. Yang and K. Yu, "3D Convolutional Neural Networks for Human Action

Recognition," in IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 35,

no. 1, pp. 221-231, Jan. 2013.

[4] T. Wiegand, G. J. Sullivan, G. Bjontegaard and A. Luthra, "Overview of the H.264/AVC

video coding standard," in IEEE Transactions on Circuits and Systems for Video Technology,

vol. 13, no. 7, pp. 560-576, July 2003.

[5] H. Kawamoto, "The history of liquid-crystal displays," in Proceedings of the IEEE, vol. 90,

no. 4, pp. 460-500, April 2002.

[6] T. Komine and M. Nakagawa, "Fundamental analysis for visible-light communication system

using LED lights," in IEEE Transactions on Consumer Electronics, vol. 50, no. 1, pp. 100-

107, Feb. 2004.

[7] S. Kunić and Z. Šego, "OLED technology and displays," Proceedings ELMAR-2012, Zadar,

2012, pp. 31-35.

[8] Jun Hyuk Cheon et al., "Active-matrix OLED on bendable metal foil," in IEEE Transactions

on Electron Devices, vol. 53, no. 5, pp. 1273-1276, May 2006.

www.manaraa.com

126

[9] G. J. Sullivan, J. Ohm, W. Han and T. Wiegand, "Overview of the High Efficiency Video

Coding (HEVC) Standard," in IEEE Transactions on Circuits and Systems for Video

Technology, vol. 22, no. 12, pp. 1649-1668, Dec. 2012.

[10] J. Ohm, G. J. Sullivan, H. Schwarz, T. K. Tan and T. Wiegand, “Comparison of the coding

efficiency of video coding standards including high efficiency video coding (HEVC),” IEEE

Transactions on Circuits Systems for Video Technology, vol. 22, no. 12, pp. 1668–1683, 2012.

[11] E. Dumic, M. Mustra, S. Grgic and G. Gvozden, "Image quality of 4∶2∶2 and 4∶2∶0

chroma subsampling formats," 2009 International Symposium ELMAR, Zadar, 2009, pp. 19-

24.

[12] B. Ostermann, "Differences between an object-based analysis-synthesis coder and a block-

based hybrid coder," Proceedings. International Conference on Image Processing,

Washington, DC, USA, 1995, pp. 398-401 vol.2.

[13] J. Lainema, F. Bossen, W. Han, J. Min and K. Ugur, “Intra coding of the HEVC standard,”

IEEE Transactions on Circuits and Systems for Video Technology, vol. 22, no. 12, pp. 1792–

1801, Dec. 2012.

[14] L. Zhao, L. Zhang, S. Ma, and D. Zhao, “Fast mode decision algorithm for intra prediction

in HEVC,” in Proc. IEEE VCIP, Nov. 2011, pp. 1-4.

[15] H. Zhang and Z. Ma, “Fast intra mode decision for High Efficiency Video Coding

(HEVC),” IEEE Transactions on Circuits and Systems for Video Technology, vol. 24, no. 4,

pp. 660–668, Apr. 2014.

[16] S. Na, W. Lee, and K. Yoo, “Edge-based fast mode decision algorithm for intra prediction

in HEVC,” in Proc. IEEE Int. Conf. Consum. Electron. (ICCE), Jan. 2014, pp. 11–14.

www.manaraa.com

127

[17] J. Leng, L. Sun, T. Ikenaga, and S. Sakaida, “Content based hierarchical fast coding unit

decision algorithm for HEVC,” in Proc. CMSP, May 2012, pp. 56-59.

[18] S. Cho and M. Kim, “Fast CU splitting and pruning for suboptimal CU partitioning in

HEVC intra coding,” IEEE Trans. Circuits Syst. Video Technol., vol. 23, no. 9, pp. 1555–

1564, Sep. 2013.

[19] S. Ma, S. Wang, S. Wang, L. Zhao, Q. Yu and W. Gao, “Low complexity rate distortion

optimization for HEVC,” in Proc. Data Compress. Conf. (DCC), pp. 73–82. March, 2013.

[20] J. Zhu, Z. Liu, D. Wang, Q. Han and Y. Song, “Fast prediction mode decision with

Hadamard transform based rate-distortion cost estimation for HEVC intra coding,” in Proc.

ICIP, 2013, pp. 1977–1981.

[21] Y.-K. Tu, J.-F. Yang and M.-T. Sun, “Efficient rate-distortion estimation for H.264/AVC

coders,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 16, no. 5, pp.

600–611, May 2006.

[22] W. Shen, Y. Fan, L. Huang, J. Li and X. Zeng, “A hardware-friendly method for rate-

distortion optimization of HEVC intra coding", International Symposium on VLSI-DAT, pp.

1-4, Apr. 2014.

[23] S. Johar and M. Alwani, “Method for fast bits estimation in rate distortion for intra coding

units in HEVC,” in Proc. IEEE Consumer Communications and Network Conference, Jan.

2013, pp. 721–724.

[24] V. Sze, M. Budagavi and G. J. Sullivan, “High efficiency video coding (HEVC): algorithms

and architectures,” Springer, 2014.

[25] F. Bossen, “CE1: Table-based bit estimation for CABAC”, joint Collaborative Team on

Video Coding (JCT-VC), Document JCTVC-G763, Geneva, Nov. 2011.

www.manaraa.com

128

[26] Z. Sheng, D. Zhou, H. Sun and S. Goto, “Low-Complexity Rate-Distortion Optimization

Algorithms for HEVC Intra Prediction,” In MultiMedia Modeling; Springer International

Publishing: Berlin, Germany, 2014; Lecture Notes in Computer Science; Volume 8325, pp.

541–552.

[27] P. Sharabayko and O. G. Ponomarev, “Fast rate estimation for RDO mode decision in

HEVC,” Entropy, 16 (2014), no. 12, pp. 6667-6685.

[28] J. Zhu, Z. Liu, D. Wang, Q. Han and Y. Song, “HDTV1080p HEVC intra encoder with

source texture based CU/PU mode pre-decision,” in Proc. 19th Asia South Pacific Design

Automation Conference (ASP-DAC), Jan. 2014, pp. 367–372.M.

[29] G. Pastuszak and A. Abramowski, “Algorithm and architecture design of the H.265/HEVC

intra encoder,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 26, no.

1, pp. 210-222, Jan. 2016.

[30] B. Lee and M. Kim, “A CU-level rate and distortion estimation scheme for RDO of

hardware-friendly HEVC encoders using low-complexity integer DCTs,” IEEE Transactions

on Image Processing, vol. 25, no. 8, pp. 3787-3800, August, 2016.

[31] X. Zhao, J. Sun, S. Ma and W. Gao, “Novel statistical modeling, analysis and

implementation of rate-distortion estimation for H.264/AVC coders,” IEEE Transactions on

Circuits and Systems for Video Technology, vol. 20, no. 5, pp. 647–660, May 2010.

[32] S. F. Tsai, C. T. Li, H. H. Chen, P. K. Tsung, K. Y. Chen and L. G. Chen, “A 1062

Mpixels/s 8192x4320p High Efficiency Video Coding (H.265) Encoder Chip”, in Proc.

Symposium on VLSI Circuits, pp. 188-189, June, 2013.

www.manaraa.com

129

[33] X. Huang, H. Jia, B. Cai, C. Zhu, J. Liu, M. Yang, D. Xie and W. Gao, “Fast algorithms and

VLSI architecture design for HEVC intra-mode decision,” Journal of Real-Time Image

Processing, December, vol. 12, no. 2, pp. 285-302, August, 2015.

[34] C. C. Ju, et al., “A 0.5nJ/Pixel 4K H.265/HEVC Codec LSI for Multi-Format Smart phone

Applications,” in Proc. International Solid-State Circuit Conference (ISSCC), pp. 1-3, 2015.

[35] H. Sun, D. Zhou, L. Hu, S. Kimura, S. Goto, “Fast algorithm and VLSI architecutre of rate

distortion optimization in H.265/HEVC,” IEEE Trans. Multimedia, vol. 19, no. 11, pp. 2375-

2390, November 2017.

[36] F. Li, G. Shi, F. Wu, “An efficient VLSI architecture for 4×4 intra prediction in the high

efficiency video coding (HEVC) standard,” in Proc. ICIP, Sep. 2011, pp. 381-384.

[37] D. Palomino, F. Sampaio, L. Agostini, S. Bampi, and A. Susin, “A memory aware and

multiplierless VLSI architecture for the complete intra prediction of the HEVC emerging

standard,” in Proc. ICIP, Sep. 2012, pp. 201–204.

[38] C. Liu, W. Shen, T. Ma, Y. Fan, X. Zeng, “A highly pipelined VLSI architecture for all

modes and block sizes intra prediction in HEVC encoder,” in Proc. ASIC, Oct. 2013, pp. 1-4.

[39] A. Abramowski and G. Pastuszak, “A double-path intra prediction architecture for the

hardware H.265/HEVC encoder,” in Proc. SDDECS, Apr. 2014, pp. 27–32.

[40] Z. Liu, D. Wang, H. Zhu, and X. Huang, “41.7BN-pixels/s reconfigurable intra prediction

architecture for HEVC 2560×1600 encoder,” in Proc. ICASSP, May 2013, pp. 2634–2638.

[41] N. Zhou, D. Ding, and L. Yu, “On hardware architecture and processing order of HEVC

intra prediction module,” in Proc. PCS, Dec. 2013, pp. 101–104.

[42] B. Min, Z. Xu, R. Cheung, “A fully pipelined hardware architecture for intra prediction of

HEVC,” IEEE Trans. Circuits Syst. Video Technol., vol. 27. no. 2, December, 2017.

www.manaraa.com

130

[43] H. Azgin, E. Kalali, I. Hamzaoglu, “A computation and energy reduction technique for

HEVC intra prediction,” IEEE Trans. Consumer Electronics, vol. 63, no. 1, pp. 36-43,

February 2017.

[44] K. Miyazawa, et al., “Real-time hardware implementation of HEVC video encoder for

1080p HD video”, in Proc. Picture Coding Symp. (PCS), Dec. 2013, pp. 225-228.

[45] S. Atapattu, N. Liyanage, N. Menuka, I. Perera, and A. Pasqual, “Real-time all intra HEVC

HD encoder on FPGA”, in Proc. IEEE Int. Conf. Application-Specific Syst., Architectures

and Processors, July 2016.

[46] M. Chen, Y. Zhang, C. Lu, “Efficient architecture of variable size HEVC 2D-DCT for

FPGA platforms,” International Journal of Electronics and Communications, vol. 73, pp. 1-8,

2017.

[47] Y. Zhang, C. Lu, “Efficient algorithm adaptations and fully-parallel hardware architecture

of H.265/HEVC intra encoder,” IEEE Trans. Circuits Syst. Video Technol., early access,

2018

[48] Y. Zhang, C. Lu, “A highly-parallel hardware architecture of table-based CABAC bit rate

estimator in HEVC intra encoder,” IEEE Trans. Circuits Syst. Video Technol., vol. 29, no. 5,

pp. 1544-1558, May 2019.

[49] V. Sze, Y. Chen, T. Yang, and J. Emer. "Efficient processing of deep neural networks: A

tutorial and survey." Proceedings of the IEEE 105, no. 12 (2017): 2295-2329.

[50] Z. Chen, Y. Li, F. Liu, Z. Liu, X. Pan, W. Sun, Y. Wang, Y. Zhou, H. Zhu, and S. Liu.

"CNN-Optimized Image Compression with Uncertainty based Resource Allocation." In

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition

Workshops, pp. 2559-2562. 2018.

www.manaraa.com

131

[51] W. Park, and M. Kim. "CNN-based in-loop filtering for coding efficiency improvement."

In 2016 IEEE 12th Image, Video, and Multidimensional Signal Processing Workshop

(IVMSP), pp. 1-5. IEEE, 2016.

[52] Y. Dai, D. Liu, and F. Wu. "A convolutional neural network approach for post-processing in

HEVC intra coding." In International Conference on Multimedia Modeling, pp. 28-39.

Springer, Cham, 2017.

[53] J. He, W. Yang, and J. Wang. "Fast HEVC coding unit decision based on BP-Neural

Network." International Journal of Grid Distribution Computing 8.4 (2015): 289-300.

[54] R. Song, D. Liu, H. Li, and F. Wu. "Neural network-based arithmetic coding of intra

prediction modes in HEVC." In 2017 IEEE Visual Communications and Image Processing

(VCIP), pp. 1-4. IEEE, 2017.

[55] T. Li, M. Xu, and X. Deng. "A deep convolutional neural network approach for complexity

reduction on intra-mode HEVC." In 2017 IEEE International Conference on Multimedia and

Expo (ICME), pp. 1255-1260. IEEE, 2017.

[56] M. Xu, T. Li, Z. Wang, X. Deng, R. Yang, and Z. Guan. "Reducing complexity of HEVC:

A deep learning approach." IEEE Transactions on Image Processing 27, no. 10 (2018):

5044-5059.

[57] T. Laude, J. Ostermann, "Deep learning-based intra prediction mode decision for

HEVC." 2016 Picture Coding Symposium (PCS). IEEE, 2016.

[58] W. Cui, T. Zhang, S. Zhang, F. Jiang, W. Zuo, and D. Zhao. "Convolutional neural

networks based intra prediction for HEVC." arXiv preprint arXiv:1808.05734 (2018).

www.manaraa.com

132

[59] J. Li, B. Li, J. Xu, and R. Xiong. "Intra prediction using fully connected network for video

coding." In 2017 IEEE International Conference on Image Processing (ICIP), pp. 1-5. IEEE,

2017.

[60] N. Song, Z. Liu, X. Ji, and D. Wang. "CNN oriented fast PU mode decision for HEVC

hardwired intra encoder." In 2017 IEEE Global Conference on Signal and Information

Processing (GlobalSIP), pp. 239-243. IEEE, 2017.

[61] X. Yu, Z. Liu, J. Liu, Y. Gao, and D. Wang. "VLSI friendly fast CU/PU mode decision for

HEVC intra encoding: Leveraging convolution neural network." In 2015 IEEE International

Conference on Image Processing (ICIP), pp. 1285-1289. IEEE, 2015.

[62] Z. Liu, X. Yu, Y. Gao, S. Chen, X. Ji, and D. Wang. "CU partition mode decision for

HEVC hardwired intra encoder using convolution neural network." IEEE Transactions on

Image Processing 25, no. 11 (2016): 5088-5103.

[63] Gerald Schaefer, Michal Stich, "UCID: an uncompressed color image database," Proc. SPIE

5307, Storage and Retrieval Methods and Applications for Multimedia, Dec 2003.

www.manaraa.com

133

VITA

Graduate School

Southern Illinois University

Yuanzhi Zhang

stephen.zyz@gmail.com

Shandong University, China

Bachelor of Science, Information Science and Technology, June 2011

Shandong University, China

Master of Science, Electrical and Computer Engineering, June 2014

Dissertation Paper Title:

 Algorithms and Hardware Co-Design of HEVC Intra Encoders

Major Professor: Dr. Chao Lu

Publications:

[1] Y. Zhang, C. Lu, “High-Performance Algorithm Adaptations and Hardware Architecture for

HEVC Intra Encoders”, IEEE Transactions on Circuits and Systems for Video Technology,

vol. 29, pp. 2138-2145, 2019.

[2] Y. Zhang, C. Lu, “A highly-parallel hardware architecture of table-based CABAC bit rate

estimator in HEVC intra encoder,” IEEE Transactions on Circuits and Systems for Video

Technology, vol. 29, pp. 1544-1558, 2018.

[3] Y. Zhang, C. Lu, “Efficient algorithm adaptations and fully-parallel hardware architecture of

H.265/HEVC intra encoder,” IEEE Transactions on Circuits and Systems for Video

Technology, early access, 2018.

[4] M. Chen, Y. Zhang, C. Lu, “Efficient architecture of variable size HEVC 2D-DCT for FPGA

platforms,” International Journal of Electronics and Communications, vol. 73, pp. 1-8, 2017.

[5] X. Wang, Y. Zhang, C. Lu, Z. Mao, “Power efficient SRAM design with integrated bit line

charge pump”, International Journal of Electronics and Communications, vol. 70, pp. 1395-

1402, 2016.

[6] Q. Huang, Y. Zhang, Z. Ge, C. Lu, “Refining Wi-Fi Based Indoor Localization with Li-Fi

Assisted Model Calibration in Smart Buildings”, 16th International Conference on Computing

in Civil and Building Engineering, 2016.

https://www.sciencedirect.com/science/article/pii/S1434841116304800
https://www.sciencedirect.com/science/article/pii/S1434841116304800
https://arxiv.org/abs/1602.07399
https://arxiv.org/abs/1602.07399

